Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,23 @@ import shutil
|
|
| 7 |
import subprocess
|
| 8 |
import sys
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
os.environ['SPCONV_ALGO'] = 'native'
|
| 11 |
from typing import *
|
| 12 |
import torch
|
|
@@ -257,11 +274,11 @@ def split_image(image: Image.Image) -> List[Image.Image]:
|
|
| 257 |
|
| 258 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 259 |
gr.Markdown("""
|
| 260 |
-
##
|
| 261 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 262 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
| 263 |
|
| 264 |
-
✨
|
| 265 |
""")
|
| 266 |
|
| 267 |
with gr.Row():
|
|
@@ -342,11 +359,11 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 342 |
demo.unload(end_session)
|
| 343 |
|
| 344 |
single_image_input_tab.select(
|
| 345 |
-
lambda: tuple([False, gr.
|
| 346 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 347 |
)
|
| 348 |
multiimage_input_tab.select(
|
| 349 |
-
lambda: tuple([True, gr.
|
| 350 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 351 |
)
|
| 352 |
|
|
@@ -370,12 +387,12 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 370 |
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
| 371 |
outputs=[output_buf, video_output],
|
| 372 |
).then(
|
| 373 |
-
lambda: tuple([gr.
|
| 374 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 375 |
)
|
| 376 |
|
| 377 |
video_output.clear(
|
| 378 |
-
lambda: tuple([gr.
|
| 379 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 380 |
)
|
| 381 |
|
|
@@ -384,7 +401,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 384 |
inputs=[output_buf, mesh_simplify, texture_size],
|
| 385 |
outputs=[model_output, download_glb],
|
| 386 |
).then(
|
| 387 |
-
lambda: gr.
|
| 388 |
outputs=[download_glb],
|
| 389 |
)
|
| 390 |
|
|
@@ -393,12 +410,12 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 393 |
inputs=[output_buf],
|
| 394 |
outputs=[model_output, download_gs],
|
| 395 |
).then(
|
| 396 |
-
lambda: gr.
|
| 397 |
outputs=[download_gs],
|
| 398 |
)
|
| 399 |
|
| 400 |
model_output.clear(
|
| 401 |
-
lambda: gr.
|
| 402 |
outputs=[download_glb],
|
| 403 |
)
|
| 404 |
|
|
|
|
| 7 |
import subprocess
|
| 8 |
import sys
|
| 9 |
|
| 10 |
+
# Install local wheels at runtime
|
| 11 |
+
def install_local_wheels():
|
| 12 |
+
"""Install the local wheel files that couldn't be installed during Docker build."""
|
| 13 |
+
wheels_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'wheels')
|
| 14 |
+
if os.path.exists(wheels_dir):
|
| 15 |
+
wheel_files = [f for f in os.listdir(wheels_dir) if f.endswith('.whl')]
|
| 16 |
+
for wheel_file in wheel_files:
|
| 17 |
+
wheel_path = os.path.join(wheels_dir, wheel_file)
|
| 18 |
+
try:
|
| 19 |
+
subprocess.check_call([sys.executable, '-m', 'pip', 'install', wheel_path])
|
| 20 |
+
print(f"Successfully installed {wheel_file}")
|
| 21 |
+
except subprocess.CalledProcessError as e:
|
| 22 |
+
print(f"Failed to install {wheel_file}: {e}")
|
| 23 |
+
|
| 24 |
+
# Install wheels before importing trellis
|
| 25 |
+
install_local_wheels()
|
| 26 |
+
|
| 27 |
os.environ['SPCONV_ALGO'] = 'native'
|
| 28 |
from typing import *
|
| 29 |
import torch
|
|
|
|
| 274 |
|
| 275 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 276 |
gr.Markdown("""
|
| 277 |
+
## ASM - Advanced Spatial Modeling for 3D Generation
|
| 278 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 279 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
| 280 |
|
| 281 |
+
✨Features: 1) Multi-image support. 2) Gaussian file extraction. 3) Advanced 3D generation.
|
| 282 |
""")
|
| 283 |
|
| 284 |
with gr.Row():
|
|
|
|
| 359 |
demo.unload(end_session)
|
| 360 |
|
| 361 |
single_image_input_tab.select(
|
| 362 |
+
lambda: tuple([False, gr.update(visible=True), gr.update(visible=False)]),
|
| 363 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 364 |
)
|
| 365 |
multiimage_input_tab.select(
|
| 366 |
+
lambda: tuple([True, gr.update(visible=False), gr.update(visible=True)]),
|
| 367 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 368 |
)
|
| 369 |
|
|
|
|
| 387 |
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
| 388 |
outputs=[output_buf, video_output],
|
| 389 |
).then(
|
| 390 |
+
lambda: tuple([gr.update(interactive=True), gr.update(interactive=True)]),
|
| 391 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 392 |
)
|
| 393 |
|
| 394 |
video_output.clear(
|
| 395 |
+
lambda: tuple([gr.update(interactive=False), gr.update(interactive=False)]),
|
| 396 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 397 |
)
|
| 398 |
|
|
|
|
| 401 |
inputs=[output_buf, mesh_simplify, texture_size],
|
| 402 |
outputs=[model_output, download_glb],
|
| 403 |
).then(
|
| 404 |
+
lambda: gr.update(interactive=True),
|
| 405 |
outputs=[download_glb],
|
| 406 |
)
|
| 407 |
|
|
|
|
| 410 |
inputs=[output_buf],
|
| 411 |
outputs=[model_output, download_gs],
|
| 412 |
).then(
|
| 413 |
+
lambda: gr.update(interactive=True),
|
| 414 |
outputs=[download_gs],
|
| 415 |
)
|
| 416 |
|
| 417 |
model_output.clear(
|
| 418 |
+
lambda: gr.update(interactive=False),
|
| 419 |
outputs=[download_glb],
|
| 420 |
)
|
| 421 |
|