Spaces:
Sleeping
Sleeping
Alex Vega
commited on
Commit
·
212f1ad
1
Parent(s):
4fa7efe
up
Browse files- Dockerfile +13 -0
- main.py +48 -0
- requirements.txt +7 -0
Dockerfile
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.12-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
COPY ./requirements.txt .
|
| 6 |
+
|
| 7 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 8 |
+
|
| 9 |
+
COPY . .
|
| 10 |
+
|
| 11 |
+
EXPOSE 7860
|
| 12 |
+
|
| 13 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile
|
| 2 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
import io
|
| 6 |
+
|
| 7 |
+
MODEL_NAME = "ahmed-masoud/sign_language_translator"
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
processor = ViTImageProcessor.from_pretrained(MODEL_NAME)
|
| 12 |
+
|
| 13 |
+
model = ViTForImageClassification.from_pretrained(MODEL_NAME)
|
| 14 |
+
|
| 15 |
+
print(f"Modelo '{MODEL_NAME}' cargado")
|
| 16 |
+
|
| 17 |
+
except Exception as e:
|
| 18 |
+
print(f"Error al cargar el modelo {e}")
|
| 19 |
+
model = None
|
| 20 |
+
processor = None
|
| 21 |
+
|
| 22 |
+
app = FastAPI(title="API de ASL con modelo de HF")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@app.post("/predict/")
|
| 26 |
+
async def translate_sign(file: UploadFile = File(...)):
|
| 27 |
+
if not model or not processor:
|
| 28 |
+
return {"error": "Modelo no disponible."}
|
| 29 |
+
|
| 30 |
+
image_bytes = await file.read()
|
| 31 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 32 |
+
|
| 33 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 34 |
+
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
outputs = model(**inputs)
|
| 37 |
+
logits = outputs.logits
|
| 38 |
+
|
| 39 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 40 |
+
|
| 41 |
+
predicted_label = model.config.id2label[predicted_class_idx]
|
| 42 |
+
|
| 43 |
+
return {"prediction": predicted_label}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@app.get("/")
|
| 47 |
+
def read_root():
|
| 48 |
+
return {"message": "API ok. Usa el endpoint /predict/ para predecir."}
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
python-multipart
|
| 4 |
+
Pillow
|
| 5 |
+
transformers[torch]
|
| 6 |
+
torch
|
| 7 |
+
torchvision
|