Upload 14 files
Browse files- models/__init__.py +0 -0
- models/__pycache__/__init__.cpython-313.pyc +0 -0
- models/__pycache__/esm_2_650m.cpython-313.pyc +0 -0
- models/esm_2_650m.py +63 -0
- tests/__init__.py +0 -0
- tests/__pycache__/__init__.cpython-313.pyc +0 -0
- tests/models/__init__.py +0 -0
- tests/models/__pycache__/__init__.cpython-313.pyc +0 -0
- tests/models/__pycache__/test_esm_w_650m.cpython-313-pytest-8.4.1.pyc +0 -0
- tests/models/test_esm_w_650m.py +13 -0
- tests/utils/__init__.py +0 -0
- tests/utils/__pycache__/__init__.cpython-313.pyc +0 -0
- tests/utils/__pycache__/test_compare_embeddings.cpython-313-pytest-8.4.1.pyc +0 -0
- tests/utils/test_compare_embeddings.py +47 -0
models/__init__.py
ADDED
|
File without changes
|
models/__pycache__/__init__.cpython-313.pyc
ADDED
|
Binary file (157 Bytes). View file
|
|
|
models/__pycache__/esm_2_650m.cpython-313.pyc
ADDED
|
Binary file (1.33 kB). View file
|
|
|
models/esm_2_650m.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModel
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
|
| 5 |
+
model = AutoModel.from_pretrained("facebook/esm2_t33_650M_UR50D")
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# -------------------------------------------------------------------------------------------------------
|
| 9 |
+
# get_embedding:
|
| 10 |
+
# This function takes a protein sequence (like "MKTFFV...") and turns it into a single vector (embedding)
|
| 11 |
+
# using the ESM-2 language model for proteins. This vector is like a unique "fingerprint" of the sequence
|
| 12 |
+
# and can be compared with others using cosine similarity.
|
| 13 |
+
|
| 14 |
+
# Here's how it works step by step:
|
| 15 |
+
|
| 16 |
+
# 1. Tokenization (turn text into numbers):
|
| 17 |
+
# The input sequence (a string of amino acids) is turned into tokens that the model understands.
|
| 18 |
+
# The tokenizer:
|
| 19 |
+
# - Adds special tokens like [CLS] at the beginning (used as a summary marker)
|
| 20 |
+
# - Pads or truncates if needed
|
| 21 |
+
# - Returns a PyTorch tensor with shape [1, sequence_length] so the model can process it.
|
| 22 |
+
|
| 23 |
+
# 2. Model Inference (generate the "hidden states" or embeddings):
|
| 24 |
+
# We feed the tokenized input into the ESM-2 model. It outputs a 3D tensor:
|
| 25 |
+
# [batch_size, sequence_length, embedding_dim] → e.g. [1, 35, 1280]
|
| 26 |
+
# This means: for each of the 35 tokens (amino acids + [CLS]), we get a 1280-dimensional vector
|
| 27 |
+
# that captures its meaning based on the entire sequence (like understanding a word in context).
|
| 28 |
+
|
| 29 |
+
# 3. Embedding Extraction:
|
| 30 |
+
# We extract two types of vectors:
|
| 31 |
+
# - CLS vector (position 0): a single vector meant to summarize the entire sequence
|
| 32 |
+
# - Mean vector: we average all the other vectors (ignoring CLS) to get a smoothed-out view of the sequence
|
| 33 |
+
|
| 34 |
+
# 4. Feature Fusion (merge the summary + content vectors):
|
| 35 |
+
# We concatenate the CLS vector and the mean vector, so our final embedding includes:
|
| 36 |
+
# - Global summary (CLS)
|
| 37 |
+
# - Averaged local context (mean)
|
| 38 |
+
# This creates a more informative representation than using only one of them.
|
| 39 |
+
|
| 40 |
+
# 5. Normalization (make comparison fair):
|
| 41 |
+
# We convert the final vector into a unit vector — meaning its length becomes 1.
|
| 42 |
+
# This is essential for cosine similarity to work properly — we want to compare direction, not magnitude.
|
| 43 |
+
|
| 44 |
+
# Output:
|
| 45 |
+
# A NumPy array representing the final embedding for the input protein sequence.
|
| 46 |
+
# This vector can now be used for comparing sequences, clustering, or feeding into ML models.
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_embedding(sequence: str):
|
| 50 |
+
tokens = tokenizer(sequence, return_tensors="pt", padding=True, truncation=True)
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
outputs = model(**tokens)
|
| 53 |
+
|
| 54 |
+
cls_vec = outputs.last_hidden_state[:, 0, :] # [CLS] token
|
| 55 |
+
mean_vec = outputs.last_hidden_state[:, 1:, :].mean(dim=1) # Skip [CLS]
|
| 56 |
+
|
| 57 |
+
# Concatenate CLS + mean
|
| 58 |
+
embedding = torch.cat([cls_vec, mean_vec], dim=-1).squeeze()
|
| 59 |
+
|
| 60 |
+
# Normalize the embedding (unit vector)
|
| 61 |
+
embedding = embedding / embedding.norm()
|
| 62 |
+
|
| 63 |
+
return embedding.numpy()
|
tests/__init__.py
ADDED
|
File without changes
|
tests/__pycache__/__init__.cpython-313.pyc
ADDED
|
Binary file (156 Bytes). View file
|
|
|
tests/models/__init__.py
ADDED
|
File without changes
|
tests/models/__pycache__/__init__.cpython-313.pyc
ADDED
|
Binary file (163 Bytes). View file
|
|
|
tests/models/__pycache__/test_esm_w_650m.cpython-313-pytest-8.4.1.pyc
ADDED
|
Binary file (5.12 kB). View file
|
|
|
tests/models/test_esm_w_650m.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from models.esm_2_650m import get_embedding
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def test_get_embedding_shape_and_type():
|
| 6 |
+
# Example short protein sequence
|
| 7 |
+
sequence = "MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQ"
|
| 8 |
+
embedding = get_embedding(sequence)
|
| 9 |
+
|
| 10 |
+
assert isinstance(embedding, np.ndarray)
|
| 11 |
+
assert embedding.ndim == 1
|
| 12 |
+
assert embedding.shape[0] in [1280, 2560]
|
| 13 |
+
assert embedding.dtype == np.float32 or embedding.dtype == np.float64
|
tests/utils/__init__.py
ADDED
|
File without changes
|
tests/utils/__pycache__/__init__.cpython-313.pyc
ADDED
|
Binary file (162 Bytes). View file
|
|
|
tests/utils/__pycache__/test_compare_embeddings.cpython-313-pytest-8.4.1.pyc
ADDED
|
Binary file (7.83 kB). View file
|
|
|
tests/utils/test_compare_embeddings.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from utils import compare_embeddings
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def test_very_high_similarity():
|
| 6 |
+
emb1 = np.array([0.1, 0.2, 0.3])
|
| 7 |
+
emb2 = np.array([0.1, 0.2, 0.3])
|
| 8 |
+
similarity, classification = compare_embeddings(emb1, emb2)
|
| 9 |
+
|
| 10 |
+
assert similarity >= 0.85
|
| 11 |
+
assert classification == "very high similarity (clear homology)"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def test_high_similarity():
|
| 15 |
+
emb1 = np.array([1, 0, 0])
|
| 16 |
+
emb2 = np.array([0.8, 0.6, 0])
|
| 17 |
+
similarity, classification = compare_embeddings(emb1, emb2)
|
| 18 |
+
|
| 19 |
+
assert 0.70 <= similarity < 0.85
|
| 20 |
+
assert classification == "high similarity (likely homologous)"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def test_moderate_similarity():
|
| 24 |
+
emb1 = np.array([1, 0, 0])
|
| 25 |
+
emb2 = np.array([0.6, 0.6, 0.6])
|
| 26 |
+
similarity, classification = compare_embeddings(emb1, emb2)
|
| 27 |
+
|
| 28 |
+
assert 0.50 <= similarity < 0.70
|
| 29 |
+
assert classification == "moderate similarity (possible remote homolog)"
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def test_low_similarity():
|
| 33 |
+
emb1 = np.array([1, 0, 0])
|
| 34 |
+
emb2 = np.array([0.3, 0.95, 0])
|
| 35 |
+
similarity, classification = compare_embeddings(emb1, emb2)
|
| 36 |
+
|
| 37 |
+
assert 0.30 <= similarity < 0.50
|
| 38 |
+
assert classification == "low similarity (likely not homologous)"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def test_very_low_similarity():
|
| 42 |
+
emb1 = np.array([1, 0, 0])
|
| 43 |
+
emb2 = np.array([0, 1, 0])
|
| 44 |
+
similarity, classification = compare_embeddings(emb1, emb2)
|
| 45 |
+
|
| 46 |
+
assert similarity < 0.30
|
| 47 |
+
assert classification == "very low similarity (unrelated / random match)"
|