Spaces:
Runtime error
Runtime error
| import torch | |
| from diffusers import DiffusionPipeline, LCMScheduler, AutoPipelineForText2Image | |
| def load_lcm_weights( | |
| pipeline, | |
| use_local_model, | |
| lcm_lora_id, | |
| ): | |
| kwargs = { | |
| "local_files_only": use_local_model, | |
| "weight_name": "pytorch_lora_weights.safetensors", | |
| } | |
| pipeline.load_lora_weights( | |
| lcm_lora_id, | |
| **kwargs, | |
| adapter_name="lcm", | |
| ) | |
| def get_lcm_lora_pipeline( | |
| base_model_id: str, | |
| lcm_lora_id: str, | |
| use_local_model: bool, | |
| torch_data_type: torch.dtype, | |
| pipeline_args={}, | |
| ): | |
| # pipeline = DiffusionPipeline.from_pretrained( | |
| pipeline = AutoPipelineForText2Image.from_pretrained( | |
| base_model_id, | |
| torch_dtype=torch_data_type, | |
| local_files_only=use_local_model, | |
| **pipeline_args, | |
| ) | |
| load_lcm_weights( | |
| pipeline, | |
| use_local_model, | |
| lcm_lora_id, | |
| ) | |
| if "lcm" in lcm_lora_id.lower() or "hypersd" in lcm_lora_id.lower(): | |
| print("LCM LoRA model detected so using recommended LCMScheduler") | |
| pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) | |
| pipeline.unet.to(memory_format=torch.channels_last) | |
| return pipeline | |