Spaces:
Sleeping
Sleeping
File size: 6,235 Bytes
770451b e0ca0de 668dced 72744fc e0ca0de 72744fc e0ca0de 72744fc e0ca0de a004d4a 72744fc a004d4a 72744fc 668dced 72744fc 5b571be 72744fc 5b571be 72744fc a004d4a 72744fc 1fea0a1 72744fc a004d4a 72744fc e0ca0de 72744fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import requests
from urllib.parse import parse_qs, urlparse
from transformers import pipeline
import os
import time
# Backend API endpoints
BACKEND_BASE_URL = "http://127.0.0.1:5000"
COMPLETE_APPOINTMENT_ENDPOINT = f"{BACKEND_BASE_URL}/complete_appointment"
VALIDATE_APPOINTMENT_ENDPOINT = f"{BACKEND_BASE_URL}/validate_appointment"
# Path to your pre-generated avatar video
AVATAR_VIDEO_PATH = "http://127.0.0.1:5000/serve_video/ai_doctor_avatar.mp4" # Replace with your actual video URL
# <source src="http://127.0.0.1:5000/serve_video/ai_doctor_avatar.mp4" type="video/mp4">
# Load lightweight models for faster performance
conversation_pipeline = pipeline(
"text-generation",
model="microsoft/DialoGPT-medium",
device="cpu" # Change to "cuda" if GPU available
)
medical_qa_pipeline = pipeline(
"question-answering",
model="medicalai/ClinicalBERT_QA",
device="cpu"
)
def get_appointment_id():
query_params = parse_qs(urlparse(gr.Request().url).query)
return query_params.get("appointment_id", ["Unknown"])[0]
def validate_appointment(appointment_id):
try:
response = requests.post(
VALIDATE_APPOINTMENT_ENDPOINT,
json={"appointment_id": appointment_id},
timeout=3
)
return response.json().get("status") == "success"
except Exception:
return False
def generate_response(user_input):
"""Lightning-fast response generation"""
try:
# Try medical QA first
qa_result = medical_qa_pipeline({
"question": user_input,
"context": "Medical consultation between doctor and patient"
})
if qa_result['score'] > 0.25:
return qa_result['answer']
# Fallback to conversational AI
return conversation_pipeline(
f"Patient: {user_input}\nDoctor:",
max_length=150,
num_return_sequences=1,
do_sample=True,
top_p=0.9,
temperature=0.7
)[0]["generated_text"].split("Doctor:")[-1].strip()
except Exception:
return "I'm experiencing high demand. Could you please repeat your question?"
def end_call(appointment_id):
try:
response = requests.post(
COMPLETE_APPOINTMENT_ENDPOINT,
json={"appointment_id": appointment_id},
timeout=3
)
if response.status_code == 200:
return "Consultation completed successfully. Thank you!"
return "Couldn't complete appointment. Please contact support."
except Exception:
return "Network error. Please check your connection."
# Custom CSS for blazing fast UI
custom_css = """
:root {
--primary: #2d8cf0;
--secondary: #f8f9fa;
--accent: #ff6b6b;
}
.gradio-container {
font-family: 'Inter', sans-serif;
max-width: 1200px !important;
}
.avatar-container {
aspect-ratio: 9/16;
background: black;
border-radius: 12px;
overflow: hidden;
}
.video-container video {
object-fit: cover;
width: 100%;
height: 100%;
}
.chat-container {
height: 100%;
display: flex;
flex-direction: column;
}
.chatbot {
min-height: 500px;
flex-grow: 1;
border-radius: 12px;
background: var(--secondary);
}
.input-row {
margin-top: 0.5rem !important;
}
.primary-btn {
background: var(--primary) !important;
}
.end-btn {
background: var(--accent) !important;
}
/* Animation for smooth loading */
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
.gradio-app {
animation: fadeIn 0.3s ease-in;
}
"""
with gr.Blocks(css=custom_css, title="AI Doctor Consultation") as demo:
appointment_id = gr.State(value=get_appointment_id())
# Header
gr.Markdown("""
<div style="text-align: center; margin-bottom: 1rem;">
<h1 style="margin: 0; color: #2d8cf0;">AI Doctor Consultation</h1>
<p style="margin: 0; color: #666;">Your health matters to us</p>
</div>
""")
with gr.Row(equal_height=True):
# Left column - Avatar video
with gr.Column(scale=1, elem_classes=["avatar-container"]):
gr.Markdown("### Dr. AI Avatar")
video = gr.Video(
value=AVATAR_VIDEO_PATH,
autoplay=True,
interactive=False,
elem_classes=["video-container"]
)
# Right column - Chat interface
with gr.Column(scale=2, elem_classes=["chat-container"]):
chatbot = gr.Chatbot(
label="Consultation Chat",
bubble_full_width=False,
show_copy_button=True,
avatar_images=(
"https://i.imgur.com/8Km9tLL.png", # User
"https://i.imgur.com/3Q3ZQ2u.png" # Doctor
)
)
with gr.Row(elem_classes=["input-row"]):
user_input = gr.Textbox(
placeholder="Describe your symptoms...",
label="",
container=False,
autofocus=True,
max_lines=3
)
submit_btn = gr.Button("Send", variant="primary", elem_classes=["primary-btn"])
with gr.Row():
clear_btn = gr.Button("Clear Chat", variant="secondary")
end_btn = gr.Button("End Consultation", variant="stop", elem_classes=["end-btn"])
status = gr.Textbox(visible=False)
# Event handlers
submit_btn.click(
fn=lambda msg, hist: (msg, hist + [(msg, generate_response(msg))]),
inputs=[user_input, chatbot],
outputs=[user_input, chatbot],
queue=True
).then(
lambda: gr.update(autoplay=True), # Ensure video keeps playing
outputs=video
)
clear_btn.click(lambda: [], None, chatbot)
end_btn.click(
fn=end_call,
inputs=appointment_id,
outputs=status
)
# Optimized launch settings
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
favicon_path="https://i.imgur.com/3Q3ZQ2u.png",
prevent_thread_lock=True
) |