Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| # Initialize the model at startup | |
| analyzer = pipeline( | |
| "image-to-text", | |
| model="Salesforce/blip-image-captioning-base" | |
| ) | |
| def analyze_medical_image(image, question=""): | |
| """Analyze medical images with optional question""" | |
| try: | |
| if image is None: | |
| return "β οΈ Please upload a medical image" | |
| prompt = ( | |
| f"Question: As a radiologist, {question if question else 'describe any abnormalities in this medical scan'}. " | |
| "Answer professionally:" | |
| ) | |
| results = analyzer(image, prompt=prompt) | |
| return results[0]["generated_text"].replace(prompt, "").strip() | |
| except Exception as e: | |
| return f"β Error: {str(e)}" | |
| # Simple Gradio interface | |
| demo = gr.Interface( | |
| fn=analyze_medical_image, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Medical Scan"), | |
| gr.Textbox(label="Clinical Question (optional)", placeholder="Describe symptoms...") | |
| ], | |
| outputs=gr.Textbox(label="Analysis Report"), | |
| title="π©Ί Medical Image Analyzer", | |
| description="Upload medical scans (X-rays, CT, MRI) for AI analysis", | |
| allow_flagging="never" | |
| ) | |
| demo.launch(show_error=True) |