Spaces:
Sleeping
Sleeping
added the model code ✅✅
Browse files
app.py
CHANGED
|
@@ -5,45 +5,56 @@ from PIL import Image
|
|
| 5 |
import logging
|
| 6 |
|
| 7 |
# Configure logging
|
| 8 |
-
logging.basicConfig(
|
|
|
|
|
|
|
|
|
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
self.model = None
|
| 15 |
-
self.processor = None
|
| 16 |
-
|
| 17 |
-
def load_model(self):
|
| 18 |
-
try:
|
| 19 |
-
logger.info(f"Loading model on {self.device}...")
|
| 20 |
-
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 21 |
-
self.model = BlipForConditionalGeneration.from_pretrained(
|
| 22 |
-
"Salesforce/blip-image-captioning-base",
|
| 23 |
-
torch_dtype=torch.float32
|
| 24 |
-
).to(self.device)
|
| 25 |
-
logger.info("Model loaded successfully")
|
| 26 |
-
except Exception as e:
|
| 27 |
-
logger.error(f"Model loading failed: {e}")
|
| 28 |
-
raise RuntimeError(f"Model loading failed. Please check:\n1. Internet connection\n2. Disk space (1GB+ needed)\n3. Try: pip install -r requirements.txt")
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
def analyze_medical_image(image, question):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
try:
|
| 34 |
if not image:
|
| 35 |
return "⚠️ Please upload a medical image"
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
inputs = analyzer.processor(image, prompt, return_tensors="pt").to(analyzer.device)
|
| 42 |
|
| 43 |
with torch.no_grad():
|
| 44 |
-
outputs =
|
| 45 |
|
| 46 |
-
result =
|
| 47 |
return result.replace(prompt, "").strip()
|
| 48 |
|
| 49 |
except Exception as e:
|
|
@@ -51,17 +62,31 @@ def analyze_medical_image(image, question):
|
|
| 51 |
return f"❌ Analysis failed: {str(e)}"
|
| 52 |
|
| 53 |
# Simplified Gradio Interface
|
| 54 |
-
with gr.Blocks(
|
|
|
|
|
|
|
|
|
|
| 55 |
gr.Markdown("# 🩺 Medical Image Analyzer")
|
| 56 |
|
| 57 |
with gr.Row():
|
| 58 |
with gr.Column():
|
| 59 |
-
image_input = gr.Image(
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
with gr.Column():
|
| 64 |
-
output = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
submit_btn.click(
|
| 67 |
analyze_medical_image,
|
|
@@ -71,7 +96,6 @@ with gr.Blocks(title="Medical Image Analyzer") as app:
|
|
| 71 |
|
| 72 |
if __name__ == "__main__":
|
| 73 |
try:
|
| 74 |
-
analyzer.load_model()
|
| 75 |
app.launch(
|
| 76 |
server_name="0.0.0.0",
|
| 77 |
server_port=7860,
|
|
|
|
| 5 |
import logging
|
| 6 |
|
| 7 |
# Configure logging
|
| 8 |
+
logging.basicConfig(
|
| 9 |
+
level=logging.INFO,
|
| 10 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 11 |
+
)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
+
# Initialize model components
|
| 15 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
MODEL_LOADED = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
try:
|
| 19 |
+
logger.info(f"Loading model on {DEVICE}...")
|
| 20 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 21 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
| 22 |
+
"Salesforce/blip-image-captioning-base",
|
| 23 |
+
torch_dtype=torch.float32
|
| 24 |
+
).to(DEVICE)
|
| 25 |
+
MODEL_LOADED = True
|
| 26 |
+
logger.info("Model loaded successfully")
|
| 27 |
+
except Exception as e:
|
| 28 |
+
logger.error(f"Model loading failed: {e}")
|
| 29 |
+
raise RuntimeError(
|
| 30 |
+
"Model failed to load. Please:\n"
|
| 31 |
+
"1. Check internet connection\n"
|
| 32 |
+
"2. Verify at least 1GB disk space\n"
|
| 33 |
+
"3. Try: pip install -r requirements.txt\n"
|
| 34 |
+
"4. Restart your runtime"
|
| 35 |
+
)
|
| 36 |
|
| 37 |
+
def analyze_medical_image(image: Image.Image, question: str) -> str:
|
| 38 |
+
"""Analyze medical image with optional question"""
|
| 39 |
+
if not MODEL_LOADED:
|
| 40 |
+
return "❌ Model not available. Please check server logs."
|
| 41 |
+
|
| 42 |
try:
|
| 43 |
if not image:
|
| 44 |
return "⚠️ Please upload a medical image"
|
| 45 |
|
| 46 |
+
# Medical-focused prompt
|
| 47 |
+
prompt = (
|
| 48 |
+
f"Question: As a doctor, {question if question else 'describe any abnormalities in this medical image'} "
|
| 49 |
+
"Answer professionally:"
|
| 50 |
+
)
|
| 51 |
|
| 52 |
+
inputs = processor(image, prompt, return_tensors="pt").to(DEVICE)
|
|
|
|
| 53 |
|
| 54 |
with torch.no_grad():
|
| 55 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 56 |
|
| 57 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
| 58 |
return result.replace(prompt, "").strip()
|
| 59 |
|
| 60 |
except Exception as e:
|
|
|
|
| 62 |
return f"❌ Analysis failed: {str(e)}"
|
| 63 |
|
| 64 |
# Simplified Gradio Interface
|
| 65 |
+
with gr.Blocks(
|
| 66 |
+
title="Medical Image Analyzer",
|
| 67 |
+
css=".gradio-container {max-width: 800px !important}"
|
| 68 |
+
) as app:
|
| 69 |
gr.Markdown("# 🩺 Medical Image Analyzer")
|
| 70 |
|
| 71 |
with gr.Row():
|
| 72 |
with gr.Column():
|
| 73 |
+
image_input = gr.Image(
|
| 74 |
+
type="pil",
|
| 75 |
+
label="Upload Scan/X-ray",
|
| 76 |
+
sources=["upload", "clipboard"]
|
| 77 |
+
)
|
| 78 |
+
question_input = gr.Textbox(
|
| 79 |
+
label="Clinical Question (optional)",
|
| 80 |
+
placeholder="Describe symptoms or ask about findings..."
|
| 81 |
+
)
|
| 82 |
+
submit_btn = gr.Button("Analyze", variant="primary")
|
| 83 |
|
| 84 |
with gr.Column():
|
| 85 |
+
output = gr.Textbox(
|
| 86 |
+
label="Analysis Result",
|
| 87 |
+
interactive=False,
|
| 88 |
+
lines=10
|
| 89 |
+
)
|
| 90 |
|
| 91 |
submit_btn.click(
|
| 92 |
analyze_medical_image,
|
|
|
|
| 96 |
|
| 97 |
if __name__ == "__main__":
|
| 98 |
try:
|
|
|
|
| 99 |
app.launch(
|
| 100 |
server_name="0.0.0.0",
|
| 101 |
server_port=7860,
|