Spaces:
Runtime error
Runtime error
File size: 22,503 Bytes
1314bf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import gradio as gr
import pandas as pd
import os
from pathlib import Path
import shutil
import tempfile
import uuid
import spaces
from typing import Optional
from backend import ConfigManager, ModelManager, InferenceEngine
from backend.utils.metrics import create_accuracy_table, save_dataframe_to_csv
class GradioApp:
"""Gradio application for InternVL3 prompt engineering."""
def __init__(self):
"""Initialize the Gradio application."""
# Initialize backend components
self.config_manager = ConfigManager()
self.model_manager = ModelManager(self.config_manager)
self.inference_engine = InferenceEngine(self.model_manager, self.config_manager)
# Try to preload default model
try:
self.model_manager.preload_default_model()
print("β
Default model preloaded successfully!")
except Exception as e:
print(f"β οΈ Default model preloading failed: {str(e)}")
print("The model will be loaded when first needed.")
def get_current_model_status(self) -> str:
"""Get current model status for display."""
return self.model_manager.get_current_model_status()
def handle_stop_button(self):
"""Handle stop button click."""
message = self.inference_engine.set_stop_flag()
return message, gr.update(visible=True)
def on_model_change(self, model_selection: str, quantization_type: str) -> str:
"""Handle model/quantization dropdown changes."""
current_status = self.get_current_model_status()
if model_selection and quantization_type:
available_models = self.config_manager.get_available_models()
target_id = available_models.get(model_selection)
current_model_id = None
if self.model_manager.current_model:
current_model_id = self.model_manager.current_model.model_id
if (current_model_id != target_id or
(self.model_manager.current_model and
self.model_manager.current_model.current_quantization != quantization_type)):
return f"π Will load {model_selection} with {quantization_type} when processing starts"
return current_status
def get_model_choices_with_info(self) -> list[str]:
"""Get model choices with type information for dropdown."""
choices = []
for model_name in self.config_manager.get_available_models().keys():
model_config = self.config_manager.get_model_config(model_name)
model_type = model_config.get('model_type', 'unknown').upper()
choices.append(f"{model_name} ({model_type})")
return choices
def extract_model_name_from_choice(self, choice: str) -> str:
"""Extract the actual model name from the dropdown choice."""
return choice.split(' (')[0] if ' (' in choice else choice
def update_image_preview(self, evt: gr.SelectData, df, folder_path):
"""Update image preview when table row is selected."""
if df is None or evt.index[0] >= len(df):
return None, ""
try:
# Use the full dataframe with image paths
full_df = getattr(self.inference_engine, 'full_df', None)
if full_df is None or evt.index[0] >= len(full_df):
return None, ""
selected_row = full_df.iloc[evt.index[0]]
image_path = selected_row["Image Path"]
model_output = selected_row["Model Output"]
if not os.path.exists(image_path):
return None, model_output
file_extension = Path(image_path).suffix
temp_filename = f"gradio_preview_{uuid.uuid4().hex}{file_extension}"
temp_path = os.path.join(tempfile.gettempdir(), temp_filename)
shutil.copy2(image_path, temp_path)
return temp_path, model_output
except Exception as e:
print(f"Error loading image preview: {e}")
return None, ""
def download_results_csv(self, results_table_data):
"""Download results as CSV file."""
try:
print(f"Download function called with data type: {type(results_table_data)}")
if results_table_data is None:
print("No data to download")
return None
# Handle different data types from Gradio
if hasattr(results_table_data, 'values'):
# If it's a pandas DataFrame
df = results_table_data
elif isinstance(results_table_data, list):
# If it's a list of lists or list of dicts
if len(results_table_data) == 0:
print("Empty data")
return None
df = pd.DataFrame(results_table_data, columns=["S.No", "Image Name", "Ground Truth", "Binary Output", "Model Output"])
else:
# Try to convert to DataFrame
df = pd.DataFrame(results_table_data)
print(f"DataFrame shape: {df.shape}")
print(f"DataFrame columns: {df.columns.tolist()}")
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False)
df.to_csv(temp_file.name, index=False)
temp_file.close()
print(f"CSV file created: {temp_file.name}")
return temp_file.name
except Exception as e:
print(f"Error in download_results_csv: {str(e)}")
import traceback
traceback.print_exc()
return None
def submit_and_show_metrics(self, df):
"""Generate and show metrics for results."""
if df is None:
return df, df, None, None, None, gr.update(visible=False), gr.update(visible=False), ""
# Only create metrics if all outputs are valid yes/no responses
try:
metrics_df, cm_plot_path, cm_values = create_accuracy_table(df)
return df, df, metrics_df, cm_plot_path, cm_values, gr.update(visible=True), gr.update(visible=True), "π Metrics calculated successfully!"
except Exception as e:
print(f"Could not create metrics: {str(e)}")
return df, df, None, None, None, gr.update(visible=False), gr.update(visible=True), f"β οΈ Could not calculate metrics: {str(e)}"
@spaces.GPU
def process_input_ui(self, folder_path, prompt, quantization_type, model_selection):
"""UI wrapper for processing input with progress updates."""
if not folder_path or not prompt.strip():
return (gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
"Please upload a folder and enter a prompt.", None, None, None,
gr.update(visible=False), gr.update(visible=False),
gr.update(value="β οΈ Please upload a folder and enter a prompt.", visible=True), "", gr.update(visible=False))
# Extract actual model name from the dropdown choice
actual_model_name = self.extract_model_name_from_choice(model_selection)
# Check if model needs to be downloaded and show progress
available_models = self.config_manager.get_available_models()
model_id = available_models[actual_model_name]
# Show processing message and hide stop status
yield (gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
None, None, None, None,
gr.update(visible=False), gr.update(visible=False),
gr.update(value="π Initializing processing...", visible=True), prompt, gr.update(visible=False))
# Process the input
error, show_results, show_image, table, error_message, final_message = self.inference_engine.process_folder_input(
folder_path, prompt, quantization_type, actual_model_name, gr.Progress()
)
# If error is visible, show results section but keep error visible
if error["visible"]:
yield (gr.update(visible=False), gr.update(visible=True), gr.update(visible=True),
error, None, None, None,
gr.update(visible=False), gr.update(visible=False),
gr.update(value=final_message, visible=True), prompt, gr.update(visible=False))
else:
yield (gr.update(visible=False), gr.update(visible=True), gr.update(visible=True),
None, show_results, show_image, table,
gr.update(visible=True), gr.update(visible=False),
gr.update(value=final_message, visible=True), prompt, gr.update(visible=False))
def rerun_ui(self, df, new_prompt, quantization_type, model_selection):
"""UI wrapper for rerun with progress updates."""
if df is None or not new_prompt.strip():
return (df, None, None, None,
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(visible=True), "β οΈ Please provide a valid prompt", "")
# Extract actual model name from the dropdown choice
actual_model_name = self.extract_model_name_from_choice(model_selection)
# Hide all sections and show only processing, clear model output display
yield (df, None, None, None,
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(visible=True), "π Initializing reprocessing...", "Select a row from the table to see model output...")
# Process with new prompt
updated_df, accuracy_table_data, cm_plot, cm_values, section4_vis, progress_vis, final_message = self.inference_engine.rerun_with_new_prompt(
df, new_prompt, quantization_type, actual_model_name, gr.Progress()
)
# Show prompt editing and results sections again, show Generate Metrics button, hide progress, and clear model output display
yield (updated_df, accuracy_table_data, cm_plot, cm_values,
gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), section4_vis,
gr.update(visible=True), gr.update(visible=False), final_message, "Select a row from the table to see updated model output...")
def create_interface(self):
"""Create and return the Gradio interface."""
# CSS from original app.py
css = """
.progress {
margin: 15px 0;
padding: 20px;
border-radius: 12px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border: none;
color: white;
font-weight: 600;
font-size: 16px;
text-align: center;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
animation: progressPulse 2s ease-in-out infinite alternate;
}
@keyframes progressPulse {
0% {
transform: scale(1);
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
}
100% {
transform: scale(1.02);
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4);
}
}
.processing {
background: linear-gradient(45deg, #f0f9ff, #e3f2fd);
border: 2px solid #1976d2;
border-radius: 10px;
padding: 20px;
text-align: center;
margin: 10px 0;
}
.gr-button.processing {
background-color: #ffa726 !important;
color: white !important;
pointer-events: none;
}
/* Stop button styling */
.stop-button {
background: linear-gradient(135deg, #ff4757 0%, #c44569 100%) !important;
border: none !important;
color: white !important;
font-weight: 700 !important;
font-size: 16px !important;
box-shadow: 0 4px 15px rgba(255, 71, 87, 0.4) !important;
transition: all 0.3s ease !important;
}
.stop-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 8px 25px rgba(255, 71, 87, 0.6) !important;
background: linear-gradient(135deg, #ff3742 0%, #b83754 100%) !important;
}
.stop-status {
color: #ff4757;
font-weight: 600;
background: rgba(255, 71, 87, 0.1);
padding: 10px;
border-radius: 8px;
border-left: 4px solid #ff4757;
margin: 10px 0;
}
/* Enhanced button styling */
.gr-button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border: none;
border-radius: 8px;
color: white;
font-weight: 600;
transition: all 0.3s ease;
}
.gr-button:hover {
transform: translateY(-2px);
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4);
}
"""
with gr.Blocks(theme="origin", css=css) as demo:
gr.Markdown("""
<h1 style='text-align:center; color:#1976d2; font-size:2.5em; font-weight:bold; margin-bottom:40px!important;'>PROMPT_PILOT</h1>
<p style='text-align:center; color:#666; font-size:1.1em; margin-bottom:30px;'>
π€ AI-powered analysis with different vision models
</p>
<h2 style='text-align:center; color:#666; font-size:1.1em; margin-bottom:30px;'>
Note: Currently Accuracy only works properly in case of binary output. For other cases kindly download the csv and calculate the accuracy separately.
</h2>
""", elem_id="main-title")
# Model and Quantization selection dropdowns at the top
model_choices = self.get_model_choices_with_info()
default_choice = f"{self.config_manager.get_default_model()} (INTERNVL)"
with gr.Row():
model_dropdown = gr.Dropdown(
choices=model_choices,
value=default_choice,
label="π€ Model Selection",
info="Select model: InternVL (vision+text), Qwen (text-only)",
elem_id="model-dropdown"
)
quantization_dropdown = gr.Dropdown(
choices=["quantized(8bit)", "non-quantized(fp16)"],
value="non-quantized(fp16)",
label="π§ Model Quantization",
info="Select quantization type: quantized (8bit) uses less memory, non-quantized (fp16) for better quality",
elem_id="quantization-dropdown"
)
# Model status indicator
with gr.Row():
model_status = gr.Markdown(
value=self.get_current_model_status(),
label="Model Status",
elem_classes=["model-status"]
)
# Stop button row
with gr.Row():
stop_btn = gr.Button("π STOP PROCESSING", variant="stop", size="lg", elem_classes=["stop-button"])
stop_status = gr.Markdown("", elem_classes=["stop-status"], visible=False)
with gr.Row(visible=True) as section1_row:
with gr.Column():
folder_input = gr.File(
label="Upload Folder",
file_count="directory",
type="filepath"
)
with gr.Column():
prompt_input = gr.Textbox(
label="Enter your prompt here",
placeholder="Type your prompt...",
lines=3
)
with gr.Column():
submit_btn = gr.Button("Proceed", variant="primary")
# Progress indicator for section 1
with gr.Row(visible=True) as section1_progress_row:
section1_progress_message = gr.Markdown("", elem_classes=["progress"], visible=False)
# Section 2: Edit Prompt and Rerun Controls (separate section)
with gr.Row(visible=False) as section2_prompt_row:
with gr.Column():
with gr.Row():
prompt_input_section2 = gr.Textbox(
label="Edit Prompt",
placeholder="Modify your prompt here...",
lines=2,
scale=4
)
rerun_btn = gr.Button("π Rerun", variant="secondary", size="lg", scale=1)
# Section 3: Results Display
with gr.Row(visible=False) as section3_results_row:
error_message = gr.Textbox(label="Error Message", visible=False)
with gr.Column(scale=1):
image_preview = gr.Image(label="Selected Image", height=270, width=480)
model_output_display = gr.Textbox(
label="Model Output for Selected Image",
placeholder="Select a row from the table to see model output...",
interactive=False,
lines=3
)
with gr.Column(scale=2):
with gr.Row():
gr.HTML("") # Empty space to push button to right
download_results_btn = gr.Button("π₯ CSV", size="sm", scale=1)
results_csv_output = gr.File(label="", visible=True, scale=1, show_label=False)
results_table = gr.Dataframe(
headers=["S.No", "Image Name", "Ground Truth", "Binary Output", "Model Output"],
label="Results",
interactive=True, # Make it editable for ground truth input
col_count=(5, "fixed")
)
# Generate Metrics button
with gr.Row(visible=False) as section3_submit_row:
with gr.Column():
submit_results_btn = gr.Button("Generate Metrics", variant="primary", size="lg")
# Progress indicator row
with gr.Row(visible=False) as progress_row:
progress_message = gr.Markdown("", elem_classes=["progress"])
# Section 4: Metrics and confusion matrix
with gr.Row(visible=False) as section4_metrics_row:
with gr.Column(scale=2):
confusion_matrix_plot = gr.Image(
label="Confusion Matrix"
)
with gr.Column(scale=2):
accuracy_table = gr.Dataframe(
label="Performance Metrics",
interactive=False
)
confusion_matrix_table = gr.Dataframe(
label="Confusion Matrix Table",
interactive=False
)
# State to store folder path
folder_path_state = gr.State()
folder_input.change(
fn=lambda x: x,
inputs=[folder_input],
outputs=[folder_path_state]
)
# Event handlers
submit_btn.click(
fn=self.process_input_ui,
inputs=[folder_input, prompt_input, quantization_dropdown, model_dropdown],
outputs=[section1_row, section2_prompt_row, section3_results_row, error_message, results_table, image_preview, results_table, section3_submit_row, section4_metrics_row, section1_progress_message, prompt_input_section2, stop_status]
)
results_table.select(
fn=self.update_image_preview,
inputs=[results_table, folder_path_state],
outputs=[image_preview, model_output_display]
)
submit_results_btn.click(
fn=self.submit_and_show_metrics,
inputs=[results_table],
outputs=[results_table, results_table, accuracy_table, confusion_matrix_plot, confusion_matrix_table, section4_metrics_row, progress_row, progress_message]
)
download_results_btn.click(
fn=self.download_results_csv,
inputs=[results_table],
outputs=[results_csv_output]
)
rerun_btn.click(
fn=self.rerun_ui,
inputs=[results_table, prompt_input_section2, quantization_dropdown, model_dropdown],
outputs=[results_table, accuracy_table, confusion_matrix_plot, confusion_matrix_table,
section1_row, section2_prompt_row, section3_results_row, section4_metrics_row, section3_submit_row, progress_row, progress_message, model_output_display]
)
# Model change handler to update status
model_dropdown.change(
fn=self.on_model_change,
inputs=[model_dropdown, quantization_dropdown],
outputs=[model_status]
)
quantization_dropdown.change(
fn=self.on_model_change,
inputs=[model_dropdown, quantization_dropdown],
outputs=[model_status]
)
# Stop button click handler
stop_btn.click(
fn=self.handle_stop_button,
inputs=[],
outputs=[stop_status, stop_status]
)
return demo
def launch(self, **kwargs):
"""Launch the Gradio application."""
demo = self.create_interface()
return demo.launch(**kwargs) |