Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -42,20 +42,31 @@ Your responses should be friendly, unbiased, informative, detailed, and faithful
|
|
| 42 |
system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>"
|
| 43 |
|
| 44 |
# Function to generate model predictions.
|
| 45 |
-
|
| 46 |
@spaces.GPU()
|
| 47 |
def predict(message, history):
|
| 48 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
history_transformer_format = history + [[message, ""]]
|
| 50 |
stop = StopOnTokens()
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
messages =
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
| 56 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 57 |
generate_kwargs = dict(
|
| 58 |
-
model_inputs,
|
|
|
|
| 59 |
streamer=streamer,
|
| 60 |
max_new_tokens=1024,
|
| 61 |
do_sample=True,
|
|
@@ -66,14 +77,23 @@ def predict(message, history):
|
|
| 66 |
stopping_criteria=StoppingCriteriaList([stop]),
|
| 67 |
repetition_penalty=1.1,
|
| 68 |
)
|
|
|
|
|
|
|
| 69 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 70 |
-
t.start()
|
|
|
|
|
|
|
| 71 |
partial_message = ""
|
| 72 |
for new_token in streamer:
|
| 73 |
partial_message += new_token
|
| 74 |
-
if sft_end_token in partial_message: #
|
| 75 |
break
|
| 76 |
-
yield partial_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
css = """
|
|
|
|
| 42 |
system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>"
|
| 43 |
|
| 44 |
# Function to generate model predictions.
|
|
|
|
| 45 |
@spaces.GPU()
|
| 46 |
def predict(message, history):
|
| 47 |
+
# 初始化对话历史格式
|
| 48 |
+
if history is None:
|
| 49 |
+
history = []
|
| 50 |
+
|
| 51 |
+
# 在历史中添加当前用户输入,临时设置机器人的回复为空
|
| 52 |
history_transformer_format = history + [[message, ""]]
|
| 53 |
stop = StopOnTokens()
|
| 54 |
|
| 55 |
+
# 格式化输入为模型需要的格式
|
| 56 |
+
messages = (
|
| 57 |
+
system_prompt
|
| 58 |
+
+ sft_end_token.join([
|
| 59 |
+
sft_end_token.join([
|
| 60 |
+
f"\n{sft_start_token}{user_role}\n" + item[0],
|
| 61 |
+
f"\n{sft_start_token}{assistant_role}\n" + item[1]
|
| 62 |
+
]) for item in history_transformer_format
|
| 63 |
+
])
|
| 64 |
+
)
|
| 65 |
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
| 66 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 67 |
generate_kwargs = dict(
|
| 68 |
+
input_ids=model_inputs["input_ids"],
|
| 69 |
+
attention_mask=model_inputs["attention_mask"],
|
| 70 |
streamer=streamer,
|
| 71 |
max_new_tokens=1024,
|
| 72 |
do_sample=True,
|
|
|
|
| 77 |
stopping_criteria=StoppingCriteriaList([stop]),
|
| 78 |
repetition_penalty=1.1,
|
| 79 |
)
|
| 80 |
+
|
| 81 |
+
# 使用线程来运行生成过程
|
| 82 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 83 |
+
t.start()
|
| 84 |
+
|
| 85 |
+
# 实时生成部分消息
|
| 86 |
partial_message = ""
|
| 87 |
for new_token in streamer:
|
| 88 |
partial_message += new_token
|
| 89 |
+
if sft_end_token in partial_message: # 检测到停止标志
|
| 90 |
break
|
| 91 |
+
yield history + [[message, partial_message]] # 输出流式数据
|
| 92 |
+
|
| 93 |
+
# 处理生成的最终回复
|
| 94 |
+
final_message = partial_message.replace(sft_end_token, "").strip()
|
| 95 |
+
history.append([message, final_message]) # 更新历史记录
|
| 96 |
+
yield history # 返回完整对话历史
|
| 97 |
|
| 98 |
|
| 99 |
css = """
|