File size: 7,648 Bytes
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
Collect OpenMeteo 1-week sample data for Sept 23-30, 2025

Collects weather data for 52 strategic grid points across Core FBMC zones:
- Temperature (2m), Wind (10m, 100m), Solar radiation, Cloud cover, Pressure

Matches the JAO and ENTSOE sample period for integrated analysis.
"""

import os
import sys
from pathlib import Path
from datetime import datetime, timedelta
import pandas as pd
import polars as pl
import requests
import time

# 52 Strategic Grid Points (4-5 per country, covering major generation areas)
GRID_POINTS = [
    # Austria (5 points)
    {'name': 'AT_Vienna', 'lat': 48.21, 'lon': 16.37, 'zone': 'AT'},
    {'name': 'AT_Graz', 'lat': 47.07, 'lon': 15.44, 'zone': 'AT'},
    {'name': 'AT_Linz', 'lat': 48.31, 'lon': 14.29, 'zone': 'AT'},
    {'name': 'AT_Salzburg', 'lat': 47.81, 'lon': 13.04, 'zone': 'AT'},
    {'name': 'AT_Innsbruck', 'lat': 47.27, 'lon': 11.39, 'zone': 'AT'},

    # Belgium (4 points)
    {'name': 'BE_Brussels', 'lat': 50.85, 'lon': 4.35, 'zone': 'BE'},
    {'name': 'BE_Antwerp', 'lat': 51.22, 'lon': 4.40, 'zone': 'BE'},
    {'name': 'BE_Liege', 'lat': 50.63, 'lon': 5.57, 'zone': 'BE'},
    {'name': 'BE_Ghent', 'lat': 51.05, 'lon': 3.72, 'zone': 'BE'},

    # Czech Republic (5 points)
    {'name': 'CZ_Prague', 'lat': 50.08, 'lon': 14.44, 'zone': 'CZ'},
    {'name': 'CZ_Brno', 'lat': 49.19, 'lon': 16.61, 'zone': 'CZ'},
    {'name': 'CZ_Ostrava', 'lat': 49.82, 'lon': 18.26, 'zone': 'CZ'},
    {'name': 'CZ_Plzen', 'lat': 49.75, 'lon': 13.38, 'zone': 'CZ'},
    {'name': 'CZ_Liberec', 'lat': 50.77, 'lon': 15.06, 'zone': 'CZ'},

    # Germany-Luxembourg (5 points - major generation areas)
    {'name': 'DE_Berlin', 'lat': 52.52, 'lon': 13.40, 'zone': 'DE_LU'},
    {'name': 'DE_Munich', 'lat': 48.14, 'lon': 11.58, 'zone': 'DE_LU'},
    {'name': 'DE_Frankfurt', 'lat': 50.11, 'lon': 8.68, 'zone': 'DE_LU'},
    {'name': 'DE_Hamburg', 'lat': 53.55, 'lon': 9.99, 'zone': 'DE_LU'},
    {'name': 'DE_Cologne', 'lat': 50.94, 'lon': 6.96, 'zone': 'DE_LU'},

    # France (5 points)
    {'name': 'FR_Paris', 'lat': 48.86, 'lon': 2.35, 'zone': 'FR'},
    {'name': 'FR_Marseille', 'lat': 43.30, 'lon': 5.40, 'zone': 'FR'},
    {'name': 'FR_Lyon', 'lat': 45.76, 'lon': 4.84, 'zone': 'FR'},
    {'name': 'FR_Toulouse', 'lat': 43.60, 'lon': 1.44, 'zone': 'FR'},
    {'name': 'FR_Nantes', 'lat': 47.22, 'lon': -1.55, 'zone': 'FR'},

    # Croatia (4 points)
    {'name': 'HR_Zagreb', 'lat': 45.81, 'lon': 15.98, 'zone': 'HR'},
    {'name': 'HR_Split', 'lat': 43.51, 'lon': 16.44, 'zone': 'HR'},
    {'name': 'HR_Rijeka', 'lat': 45.33, 'lon': 14.44, 'zone': 'HR'},
    {'name': 'HR_Osijek', 'lat': 45.55, 'lon': 18.69, 'zone': 'HR'},

    # Hungary (5 points)
    {'name': 'HU_Budapest', 'lat': 47.50, 'lon': 19.04, 'zone': 'HU'},
    {'name': 'HU_Debrecen', 'lat': 47.53, 'lon': 21.64, 'zone': 'HU'},
    {'name': 'HU_Szeged', 'lat': 46.25, 'lon': 20.15, 'zone': 'HU'},
    {'name': 'HU_Miskolc', 'lat': 48.10, 'lon': 20.78, 'zone': 'HU'},
    {'name': 'HU_Pecs', 'lat': 46.07, 'lon': 18.23, 'zone': 'HU'},

    # Netherlands (4 points)
    {'name': 'NL_Amsterdam', 'lat': 52.37, 'lon': 4.89, 'zone': 'NL'},
    {'name': 'NL_Rotterdam', 'lat': 51.92, 'lon': 4.48, 'zone': 'NL'},
    {'name': 'NL_Utrecht', 'lat': 52.09, 'lon': 5.12, 'zone': 'NL'},
    {'name': 'NL_Groningen', 'lat': 53.22, 'lon': 6.57, 'zone': 'NL'},

    # Poland (5 points)
    {'name': 'PL_Warsaw', 'lat': 52.23, 'lon': 21.01, 'zone': 'PL'},
    {'name': 'PL_Krakow', 'lat': 50.06, 'lon': 19.94, 'zone': 'PL'},
    {'name': 'PL_Gdansk', 'lat': 54.35, 'lon': 18.65, 'zone': 'PL'},
    {'name': 'PL_Wroclaw', 'lat': 51.11, 'lon': 17.04, 'zone': 'PL'},
    {'name': 'PL_Poznan', 'lat': 52.41, 'lon': 16.93, 'zone': 'PL'},

    # Romania (4 points)
    {'name': 'RO_Bucharest', 'lat': 44.43, 'lon': 26.11, 'zone': 'RO'},
    {'name': 'RO_Cluj', 'lat': 46.77, 'lon': 23.60, 'zone': 'RO'},
    {'name': 'RO_Timisoara', 'lat': 45.75, 'lon': 21.23, 'zone': 'RO'},
    {'name': 'RO_Iasi', 'lat': 47.16, 'lon': 27.59, 'zone': 'RO'},

    # Slovenia (3 points)
    {'name': 'SI_Ljubljana', 'lat': 46.06, 'lon': 14.51, 'zone': 'SI'},
    {'name': 'SI_Maribor', 'lat': 46.56, 'lon': 15.65, 'zone': 'SI'},
    {'name': 'SI_Celje', 'lat': 46.24, 'lon': 15.27, 'zone': 'SI'},

    # Slovakia (3 points)
    {'name': 'SK_Bratislava', 'lat': 48.15, 'lon': 17.11, 'zone': 'SK'},
    {'name': 'SK_Kosice', 'lat': 48.72, 'lon': 21.26, 'zone': 'SK'},
    {'name': 'SK_Zilina', 'lat': 49.22, 'lon': 18.74, 'zone': 'SK'},
]

# 7 Weather variables (as specified in feature plan)
WEATHER_VARS = [
    'temperature_2m',
    'windspeed_10m',
    'windspeed_100m',
    'winddirection_100m',
    'shortwave_radiation',
    'cloudcover',
    'surface_pressure',
]

# Sample period: Sept 23-30, 2025 (matches JAO/ENTSOE sample)
START_DATE = '2025-09-23'
END_DATE = '2025-09-30'

print("=" * 70)
print("OpenMeteo 1-Week Sample Data Collection")
print("=" * 70)
print(f"Period: {START_DATE} to {END_DATE}")
print(f"Grid Points: {len(GRID_POINTS)} strategic locations")
print(f"Variables: {len(WEATHER_VARS)} weather parameters")
print(f"Duration: 7 days = 168 hours")
print()

# Collect data for all grid points
all_weather_data = []

for i, point in enumerate(GRID_POINTS, 1):
    print(f"[{i:2d}/{len(GRID_POINTS)}] {point['name']}...", end=" ")

    try:
        # OpenMeteo API call
        url = "https://api.open-meteo.com/v1/forecast"
        params = {
            'latitude': point['lat'],
            'longitude': point['lon'],
            'hourly': ','.join(WEATHER_VARS),
            'start_date': START_DATE,
            'end_date': END_DATE,
            'timezone': 'UTC'
        }

        response = requests.get(url, params=params)
        response.raise_for_status()
        data = response.json()

        # Extract hourly data
        hourly = data.get('hourly', {})
        timestamps = pd.to_datetime(hourly['time'])

        # Create DataFrame for this point
        point_df = pd.DataFrame({
            'timestamp': timestamps,
            'grid_point': point['name'],
            'zone': point['zone'],
            'lat': point['lat'],
            'lon': point['lon'],
        })

        # Add all weather variables
        for var in WEATHER_VARS:
            if var in hourly:
                point_df[var] = hourly[var]
            else:
                point_df[var] = None

        all_weather_data.append(point_df)
        print(f"[OK] {len(point_df)} hours")

        # Rate limiting: 270 req/min = ~0.22 sec between requests
        time.sleep(0.25)

    except Exception as e:
        print(f"[ERROR] {e}")
        continue

if not all_weather_data:
    print("\n[ERROR] No data collected")
    sys.exit(1)

# Combine all grid points
print("\n" + "=" * 70)
print("Processing collected data...")
combined_df = pd.concat(all_weather_data, axis=0, ignore_index=True)

print(f"  Combined shape: {combined_df.shape}")
print(f"  Total hours: {len(combined_df) // len(GRID_POINTS)} per point")
print(f"  Columns: {list(combined_df.columns)}")

# Save to parquet
output_dir = Path("data/raw/sample")
output_dir.mkdir(parents=True, exist_ok=True)
output_file = output_dir / "weather_sample_sept2025.parquet"

combined_df.to_parquet(output_file, index=False)

print(f"\n[SUCCESS] Saved to: {output_file}")
print(f"  File size: {output_file.stat().st_size / 1024:.1f} KB")
print()
print("=" * 70)
print("OpenMeteo Sample Collection Complete")
print("=" * 70)
print(f"\nCollected: {len(GRID_POINTS)} points × 7 variables × 168 hours")
print(f"Total records: {len(combined_df):,}")
print("\nNext: Add weather exploration to Marimo notebook")