Spaces:
Sleeping
Sleeping
File size: 13,466 Bytes
4202f60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
"""ENTSO-E Transparency Platform Data Collection with Rate Limiting
Collects generation, load, and cross-border flow data from ENTSO-E API.
Implements proper rate limiting to avoid temporary bans.
ENTSO-E Rate Limits (OFFICIAL):
- 60 requests per 60 seconds (hard limit - exceeding triggers 10-min ban)
- Screen scraping >60 requests/min leads to temporary IP ban
Strategy:
- 27 requests/minute (45% of 60 limit - safe)
- 1 request every ~2.2 seconds
- Request data in monthly chunks to minimize API calls
"""
import polars as pl
from pathlib import Path
from datetime import datetime, timedelta
from dotenv import load_dotenv
import os
import time
from typing import List, Tuple
from tqdm import tqdm
from entsoe import EntsoePandasClient
import pandas as pd
# Load environment variables
load_dotenv()
# FBMC Bidding Zones (12 zones from project plan)
BIDDING_ZONES = {
'AT': 'Austria',
'BE': 'Belgium',
'HR': 'Croatia',
'CZ': 'Czech Republic',
'FR': 'France',
'DE_LU': 'Germany-Luxembourg',
'HU': 'Hungary',
'NL': 'Netherlands',
'PL': 'Poland',
'RO': 'Romania',
'SK': 'Slovakia',
'SI': 'Slovenia',
}
# FBMC Cross-Border Flows (~20 major borders)
BORDERS = [
('DE_LU', 'NL'),
('DE_LU', 'FR'),
('DE_LU', 'BE'),
('DE_LU', 'AT'),
('DE_LU', 'CZ'),
('DE_LU', 'PL'),
('FR', 'BE'),
('FR', 'ES'), # External but affects FBMC
('FR', 'CH'), # External but affects FBMC
('AT', 'CZ'),
('AT', 'HU'),
('AT', 'SI'),
('AT', 'CH'), # External but affects FBMC
('CZ', 'SK'),
('CZ', 'PL'),
('HU', 'SK'),
('HU', 'RO'),
('HU', 'HR'),
('SI', 'HR'),
('PL', 'SK'),
('PL', 'CZ'),
]
class EntsoECollector:
"""Collect ENTSO-E data with proper rate limiting."""
def __init__(self, requests_per_minute: int = 27):
"""Initialize collector with rate limiting.
Args:
requests_per_minute: Max requests per minute (default: 27 = 45% of 60 limit)
"""
api_key = os.getenv('ENTSOE_API_KEY')
if not api_key or 'your_entsoe' in api_key.lower():
raise ValueError("ENTSO-E API key not configured in .env file")
self.client = EntsoePandasClient(api_key=api_key)
self.requests_per_minute = requests_per_minute
self.delay_seconds = 60.0 / requests_per_minute
self.request_count = 0
print(f"ENTSO-E Collector initialized")
print(f"Rate limit: {self.requests_per_minute} requests/minute")
print(f"Delay between requests: {self.delay_seconds:.2f}s")
def _rate_limit(self):
"""Apply rate limiting delay."""
time.sleep(self.delay_seconds)
self.request_count += 1
def _generate_monthly_chunks(
self,
start_date: str,
end_date: str
) -> List[Tuple[pd.Timestamp, pd.Timestamp]]:
"""Generate monthly date chunks for API requests.
Args:
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
List of (start, end) timestamp tuples
"""
start_dt = pd.Timestamp(start_date, tz='UTC')
end_dt = pd.Timestamp(end_date, tz='UTC')
chunks = []
current = start_dt
while current < end_dt:
# Get end of month or end_date, whichever is earlier
month_end = (current + pd.offsets.MonthEnd(0))
chunk_end = min(month_end, end_dt)
chunks.append((current, chunk_end))
current = chunk_end + pd.Timedelta(hours=1)
return chunks
def collect_generation_per_type(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect generation by production type for a bidding zone.
Args:
zone: Bidding zone code (e.g., 'DE_LU', 'FR')
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with generation data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} generation", leave=False):
try:
# Fetch generation data
df = self.client.query_generation(
zone,
start=start_chunk,
end=end_chunk,
psr_type=None # Get all production types
)
if df is not None and not df.empty:
# Convert to long format
df_reset = df.reset_index()
df_melted = df_reset.melt(
id_vars=['index'],
var_name='production_type',
value_name='generation_mw'
)
df_melted = df_melted.rename(columns={'index': 'timestamp'})
df_melted['zone'] = zone
# Convert to Polars
pl_df = pl.from_pandas(df_melted)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" ❌ Failed {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_load(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect load (demand) data for a bidding zone.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with load data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} load", leave=False):
try:
# Fetch load data
series = self.client.query_load(
zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
df = pd.DataFrame({
'timestamp': series.index,
'load_mw': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" ❌ Failed {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_cross_border_flows(
self,
from_zone: str,
to_zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect cross-border flow data between two zones.
Args:
from_zone: From bidding zone
to_zone: To bidding zone
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with flow data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
border_id = f"{from_zone}_{to_zone}"
for start_chunk, end_chunk in tqdm(chunks, desc=f" {border_id}", leave=False):
try:
# Fetch cross-border flow
series = self.client.query_crossborder_flows(
from_zone,
to_zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
df = pd.DataFrame({
'timestamp': series.index,
'flow_mw': series.values,
'from_zone': from_zone,
'to_zone': to_zone,
'border': border_id
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" ❌ Failed {border_id} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_all(
self,
start_date: str,
end_date: str,
output_dir: Path
) -> dict:
"""Collect all ENTSO-E data with rate limiting.
Args:
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
output_dir: Directory to save Parquet files
Returns:
Dictionary with paths to saved files
"""
output_dir.mkdir(parents=True, exist_ok=True)
# Calculate total requests
months = len(self._generate_monthly_chunks(start_date, end_date))
total_requests = (
len(BIDDING_ZONES) * months * 2 + # Generation + load
len(BORDERS) * months # Flows
)
estimated_minutes = total_requests / self.requests_per_minute
print("=" * 70)
print("ENTSO-E Data Collection")
print("=" * 70)
print(f"Date range: {start_date} to {end_date}")
print(f"Bidding zones: {len(BIDDING_ZONES)}")
print(f"Cross-border flows: {len(BORDERS)}")
print(f"Monthly chunks: {months}")
print(f"Total requests: ~{total_requests}")
print(f"Rate limit: {self.requests_per_minute} requests/minute (45% of 60 max)")
print(f"Estimated time: {estimated_minutes:.1f} minutes")
print()
results = {}
# 1. Collect Generation Data
print("[1/3] Collecting generation data by production type...")
generation_data = []
for zone in tqdm(BIDDING_ZONES.keys(), desc="Generation"):
df = self.collect_generation_per_type(zone, start_date, end_date)
if not df.is_empty():
generation_data.append(df)
if generation_data:
generation_df = pl.concat(generation_data)
gen_path = output_dir / "entsoe_generation_2024_2025.parquet"
generation_df.write_parquet(gen_path)
results['generation'] = gen_path
print(f"✅ Generation: {generation_df.shape[0]:,} records → {gen_path}")
# 2. Collect Load Data
print("\n[2/3] Collecting load (demand) data...")
load_data = []
for zone in tqdm(BIDDING_ZONES.keys(), desc="Load"):
df = self.collect_load(zone, start_date, end_date)
if not df.is_empty():
load_data.append(df)
if load_data:
load_df = pl.concat(load_data)
load_path = output_dir / "entsoe_load_2024_2025.parquet"
load_df.write_parquet(load_path)
results['load'] = load_path
print(f"✅ Load: {load_df.shape[0]:,} records → {load_path}")
# 3. Collect Cross-Border Flows
print("\n[3/3] Collecting cross-border flows...")
flow_data = []
for from_zone, to_zone in tqdm(BORDERS, desc="Flows"):
df = self.collect_cross_border_flows(from_zone, to_zone, start_date, end_date)
if not df.is_empty():
flow_data.append(df)
if flow_data:
flow_df = pl.concat(flow_data)
flow_path = output_dir / "entsoe_flows_2024_2025.parquet"
flow_df.write_parquet(flow_path)
results['flows'] = flow_path
print(f"✅ Flows: {flow_df.shape[0]:,} records → {flow_path}")
print()
print("=" * 70)
print("ENTSO-E Collection Complete")
print("=" * 70)
print(f"Total API requests made: {self.request_count}")
print(f"Files created: {len(results)}")
for data_type, path in results.items():
file_size = path.stat().st_size / (1024**2)
print(f" - {data_type}: {file_size:.1f} MB")
return results
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Collect ENTSO-E data with proper rate limiting")
parser.add_argument(
'--start-date',
default='2024-10-01',
help='Start date (YYYY-MM-DD)'
)
parser.add_argument(
'--end-date',
default='2025-09-30',
help='End date (YYYY-MM-DD)'
)
parser.add_argument(
'--output-dir',
type=Path,
default=Path('data/raw'),
help='Output directory for Parquet files'
)
parser.add_argument(
'--requests-per-minute',
type=int,
default=27,
help='Requests per minute (default: 27 = 45%% of 60 limit)'
)
args = parser.parse_args()
# Initialize collector and run
collector = EntsoECollector(requests_per_minute=args.requests_per_minute)
collector.collect_all(
start_date=args.start_date,
end_date=args.end_date,
output_dir=args.output_dir
)
|