File size: 17,655 Bytes
4202f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82da022
4202f60
 
 
 
 
 
 
 
82da022
4202f60
 
 
82da022
4202f60
 
82da022
4202f60
82da022
4202f60
82da022
 
 
 
 
 
4202f60
82da022
 
 
 
 
 
4202f60
 
 
 
 
82da022
4202f60
82da022
 
4202f60
82da022
 
 
 
4202f60
 
 
82da022
4202f60
 
82da022
 
4202f60
 
 
82da022
 
 
 
 
 
4202f60
 
 
 
 
 
 
82da022
 
4202f60
 
82da022
4202f60
 
 
82da022
4202f60
 
 
 
 
 
 
82da022
 
 
4202f60
82da022
4202f60
 
82da022
 
 
4202f60
 
 
82da022
4202f60
 
82da022
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
 
 
 
82da022
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
82da022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
82da022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
82da022
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
 
 
82da022
 
 
4202f60
 
82da022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
 
82da022
 
 
4202f60
82da022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
 
82da022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
82da022
4202f60
82da022
 
4202f60
 
 
 
 
82da022
4202f60
 
 
 
 
 
 
 
 
 
 
 
 
 
82da022
 
4202f60
 
 
82da022
4202f60
 
 
82da022
4202f60
 
 
 
 
 
 
 
 
 
82da022
4202f60
 
 
82da022
4202f60
 
82da022
4202f60
82da022
4202f60
82da022
 
 
 
4202f60
82da022
4202f60
82da022
 
4202f60
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
"""FBMC Flow Forecasting - Data Exploration Notebook

Day 1 Objective: Explore downloaded JAO FBMC data structure and identify patterns.

Usage:
    marimo edit notebooks/01_data_exploration.py
"""

import marimo

__generated_with = "0.17.2"
app = marimo.App(width="medium")


@app.cell
def _():
    import marimo as mo
    import polars as pl
    import altair as alt
    from pathlib import Path
    import sys

    # Add src to path for imports
    sys.path.insert(0, str(Path.cwd().parent / "src"))
    return Path, alt, mo, pl


@app.cell
def _(mo):
    mo.md(
        r"""
    # FBMC Flow Forecasting - Sample Data Exploration

    **MVP Objective**: Zero-shot electricity cross-border capacity forecasting

    ## Sample Data Goals:
    1. Load 1-week JAO sample data (Sept 23-30, 2025)
    2. Inspect MaxBEX structure (TARGET VARIABLE)
    3. Inspect CNECs + PTDFs structure (from Active Constraints)
    4. Identify binding CNECs in sample period
    5. Validate data completeness

    ## Data Sources (1-week sample):
    - **MaxBEX**: Maximum Bilateral Exchange capacity (TARGET) - 208 hours × 132 borders
    - **CNECs/PTDFs**: Active constraints with PTDFs for all zones - 813 CNECs × 40 columns

    _Note: This is a 1-week sample for API testing. Full 24-month collection pending._
    """
    )
    return


@app.cell
def _(Path):
    # Configuration
    DATA_DIR = Path("data/raw/sample")
    RESULTS_DIR = Path("results/visualizations")

    # Expected sample data files (1-week: Sept 23-30, 2025)
    MAXBEX_FILE = DATA_DIR / "maxbex_sample_sept2025.parquet"
    CNECS_FILE = DATA_DIR / "cnecs_sample_sept2025.parquet"
    return CNECS_FILE, MAXBEX_FILE


@app.cell
def _(CNECS_FILE, MAXBEX_FILE, mo):
    # Check data availability
    data_status = {
        "MaxBEX (TARGET)": MAXBEX_FILE.exists(),
        "CNECs/PTDFs": CNECS_FILE.exists(),
    }

    if all(data_status.values()):
        mo.md("""
        ✅ **Sample data files found - ready for exploration!**

        - MaxBEX: 208 hours × 132 borders
        - CNECs/PTDFs: 813 records × 40 columns
        """)
    else:
        missing = [k for k, v in data_status.items() if not v]
        mo.md(
            f"""
            ⚠️ **Missing data files**: {', '.join(missing)}

            **Next Steps:**
            1. Run sample collection: `python scripts/collect_sample_data.py`
            2. Return here for exploration
            """
        )
    return (data_status,)


@app.cell
def _(data_status, mo):
    # Only proceed if data exists
    if not all(data_status.values()):
        mo.stop(True, mo.md("⚠️ Data not available - stopping notebook"))
    return


@app.cell
def _(CNECS_FILE, MAXBEX_FILE, pl):
    # Load sample data
    print("Loading JAO sample datasets...")

    maxbex_df = pl.read_parquet(MAXBEX_FILE)
    cnecs_df = pl.read_parquet(CNECS_FILE)

    print(f"[OK] MaxBEX (TARGET): {maxbex_df.shape}")
    print(f"[OK] CNECs/PTDFs: {cnecs_df.shape}")
    return cnecs_df, maxbex_df


@app.cell
def _(cnecs_df, maxbex_df, mo):
    mo.md(
        f"""
    ## Dataset Overview (1-Week Sample: Sept 23-30, 2025)

    ### MaxBEX Data (TARGET VARIABLE)
    - **Shape**: {maxbex_df.shape[0]:,} rows × {maxbex_df.shape[1]} columns
    - **Description**: Maximum Bilateral Exchange capacity across all FBMC Core borders
    - **Border Directions**: {maxbex_df.shape[1]} (e.g., AT>BE, DE>FR, etc.)
    - **Format**: Wide format - each column is a border direction

    ### CNECs/PTDFs Data (Active Constraints)
    - **Shape**: {cnecs_df.shape[0]:,} rows × {cnecs_df.shape[1]} columns
    - **Description**: Critical Network Elements with Contingencies + Power Transfer Distribution Factors
    - **Key Fields**: tso, cnec_name, shadow_price, ram, ptdf_AT, ptdf_BE, etc.
    - **Unique CNECs**: {cnecs_df['cnec_name'].n_unique() if 'cnec_name' in cnecs_df.columns else 'N/A'}
    """
    )
    return


@app.cell
def _(mo):
    mo.md("""## 1. MaxBEX DataFrame (TARGET VARIABLE)""")
    return


@app.cell
def _(maxbex_df, mo):
    # Display MaxBEX dataframe
    mo.ui.table(maxbex_df.head(20).to_pandas())
    return


@app.cell
def _(mo):
    mo.md(
        r"""
    ### Understanding MaxBEX: Commercial vs Physical Capacity

    **What is MaxBEX?**
    - MaxBEX = **Max**imum **B**ilateral **Ex**change capacity
    - Represents commercial hub-to-hub trading capacity between zone pairs
    - NOT the same as physical interconnector ratings

    **Why 132 Border Directions?**
    - FBMC Core has 12 bidding zones (AT, BE, CZ, DE-LU, FR, HR, HU, NL, PL, RO, SI, SK)
    - MaxBEX exists for ALL zone pairs: 12 × 11 = 132 bidirectional combinations
    - This includes "virtual borders" (zone pairs without physical interconnectors)

    **Virtual Borders Explained:**
    - Example: FR→HU exchange capacity exists despite no physical FR-HU interconnector
    - Power flows through AC grid network via intermediate countries (DE, AT, CZ)
    - PTDFs (Power Transfer Distribution Factors) quantify how each zone-pair exchange affects every CNEC
    - MaxBEX is the result of optimization: maximize zone-to-zone exchange subject to ALL network constraints

    **Network Physics:**
    - A 1000 MW export from FR to HU physically affects transmission lines in:
      - Germany (DE): Power flows through DE grid
      - Austria (AT): Power flows through AT grid
      - Czech Republic (CZ): Power flows through CZ grid
    - Each CNEC has PTDFs for all zones, capturing these network sensitivities
    - MaxBEX capacity is limited by the most constraining CNEC in the network

    **Interpretation:**
    - Physical borders (e.g., DE→FR): Limited by interconnector capacity + network constraints
    - Virtual borders (e.g., FR→HU): Limited purely by network constraints (CNECs + PTDFs)
    - All MaxBEX values are simultaneously feasible (network-secure commercial capacity)
    """
    )
    return


@app.cell
def _(maxbex_df, mo):
    mo.md(f"""
    ### Key Borders Statistics
    Showing capacity ranges for major borders:
    """)

    # Select key borders for statistics table
    stats_key_borders = ['DE>FR', 'FR>DE', 'DE>NL', 'NL>DE', 'AT>DE', 'DE>AT', 'BE>NL', 'NL>BE']
    available_borders = [b for b in stats_key_borders if b in maxbex_df.columns]

    # Get statistics and round to 1 decimal place
    stats_df = maxbex_df.select(available_borders).describe()
    stats_df_rounded = stats_df.with_columns([
        pl.col(col).round(1) for col in stats_df.columns if col != 'statistic'
    ])

    mo.ui.table(stats_df_rounded.to_pandas())
    return


@app.cell
def _(alt, maxbex_df, pl):
    # MaxBEX Time Series Visualization using Polars

    # Select borders for time series chart
    timeseries_borders = ['DE>FR', 'FR>DE', 'DE>NL', 'NL>DE', 'AT>DE', 'DE>AT']
    available_timeseries = [b for b in timeseries_borders if b in maxbex_df.columns]

    # Add row number and unpivot to long format using Polars
    maxbex_with_hour = maxbex_df.select(available_timeseries).with_row_index(name='hour')

    maxbex_plot = maxbex_with_hour.unpivot(
        index=['hour'],
        on=available_timeseries,
        variable_name='border',
        value_name='capacity_MW'
    )

    chart_maxbex = alt.Chart(maxbex_plot.to_pandas()).mark_line().encode(
        x=alt.X('hour:Q', title='Hour'),
        y=alt.Y('capacity_MW:Q', title='Capacity (MW)'),
        color=alt.Color('border:N', title='Border'),
        tooltip=['hour:Q', 'border:N', 'capacity_MW:Q']
    ).properties(
        title='MaxBEX Capacity Over Time (Key Borders)',
        width=800,
        height=400
    ).interactive()

    chart_maxbex
    return


@app.cell
def _(mo):
    mo.md("""### MaxBEX Capacity Heatmap (All Zone Pairs)""")
    return


@app.cell
def _(alt, maxbex_df, pl):
    # Create heatmap of average MaxBEX capacity across all zone pairs using Polars

    # Parse border names into from/to zones with mean capacity
    zones = ['AT', 'BE', 'CZ', 'DE', 'FR', 'HR', 'HU', 'NL', 'PL', 'RO', 'SI', 'SK']
    heatmap_data = []

    for heatmap_col in maxbex_df.columns:
        if '>' in heatmap_col:
            from_zone, to_zone = heatmap_col.split('>')
            heatmap_mean_capacity = maxbex_df[heatmap_col].mean()
            heatmap_data.append({
                'from_zone': from_zone,
                'to_zone': to_zone,
                'avg_capacity': heatmap_mean_capacity
            })

    heatmap_df = pl.DataFrame(heatmap_data)

    # Create heatmap
    heatmap = alt.Chart(heatmap_df.to_pandas()).mark_rect().encode(
        x=alt.X('from_zone:N', title='From Zone', sort=zones),
        y=alt.Y('to_zone:N', title='To Zone', sort=zones),
        color=alt.Color('avg_capacity:Q',
                       scale=alt.Scale(scheme='viridis'),
                       title='Avg Capacity (MW)'),
        tooltip=['from_zone:N', 'to_zone:N', alt.Tooltip('avg_capacity:Q', format='.0f', title='Capacity (MW)')]
    ).properties(
        title='Average MaxBEX Capacity: All 132 Zone Pairs',
        width=600,
        height=600
    )

    heatmap
    return


@app.cell
def _(mo):
    mo.md("""### Physical vs Virtual Borders Analysis""")
    return


@app.cell
def _(alt, maxbex_df, pl):
    # Identify physical vs virtual borders based on typical interconnector patterns
    # Physical borders: adjacent countries with known interconnectors
    physical_borders = [
        'AT>DE', 'DE>AT', 'AT>CZ', 'CZ>AT', 'AT>HU', 'HU>AT', 'AT>SI', 'SI>AT',
        'BE>FR', 'FR>BE', 'BE>NL', 'NL>BE', 'BE>DE', 'DE>BE',
        'CZ>DE', 'DE>CZ', 'CZ>PL', 'PL>CZ', 'CZ>SK', 'SK>CZ',
        'DE>FR', 'FR>DE', 'DE>NL', 'NL>DE', 'DE>PL', 'PL>DE',
        'FR>DE', 'DE>FR',
        'HR>HU', 'HU>HR', 'HR>SI', 'SI>HR',
        'HU>RO', 'RO>HU', 'HU>SK', 'SK>HU',
        'PL>SK', 'SK>PL',
        'RO>SI', 'SI>RO'  # May be virtual
    ]

    # Calculate statistics for comparison using Polars
    comparison_data = []
    for comparison_col in maxbex_df.columns:
        if '>' in comparison_col:
            comparison_mean_capacity = maxbex_df[comparison_col].mean()
            border_type = 'Physical' if comparison_col in physical_borders else 'Virtual'
            comparison_data.append({
                'border': comparison_col,
                'type': border_type,
                'avg_capacity': comparison_mean_capacity
            })

    comparison_df = pl.DataFrame(comparison_data)

    # Box plot comparison
    box_plot = alt.Chart(comparison_df.to_pandas()).mark_boxplot(extent='min-max').encode(
        x=alt.X('type:N', title='Border Type'),
        y=alt.Y('avg_capacity:Q', title='Average Capacity (MW)'),
        color=alt.Color('type:N', scale=alt.Scale(domain=['Physical', 'Virtual'],
                                                    range=['#1f77b4', '#ff7f0e']))
    ).properties(
        title='MaxBEX Capacity Distribution: Physical vs Virtual Borders',
        width=400,
        height=400
    )

    # Summary statistics
    summary = comparison_df.group_by('type').agg([
        pl.col('avg_capacity').mean().alias('mean_capacity'),
        pl.col('avg_capacity').median().alias('median_capacity'),
        pl.col('avg_capacity').min().alias('min_capacity'),
        pl.col('avg_capacity').max().alias('max_capacity'),
        pl.len().alias('count')
    ])

    box_plot
    return comparison_df, summary


@app.cell
def _(mo, summary):
    return mo.vstack([
        mo.md("**Border Type Statistics:**"),
        mo.ui.table(summary.to_pandas())
    ])


@app.cell
def _(mo):
    mo.md("""## 2. CNECs/PTDFs DataFrame""")
    return


@app.cell
def _(cnecs_df, mo):
    # Display CNECs dataframe
    mo.ui.table(cnecs_df.head(20).to_pandas())
    return


@app.cell
def _(alt, cnecs_df, pl):
    # Top Binding CNECs by Shadow Price
    top_cnecs = (
        cnecs_df
        .group_by('cnec_name')
        .agg([
            pl.col('shadow_price').mean().alias('avg_shadow_price'),
            pl.col('ram').mean().alias('avg_ram'),
            pl.len().alias('count')
        ])
        .sort('avg_shadow_price', descending=True)
        .head(15)
    )

    chart_cnecs = alt.Chart(top_cnecs.to_pandas()).mark_bar().encode(
        x=alt.X('avg_shadow_price:Q', title='Average Shadow Price (€/MWh)'),
        y=alt.Y('cnec_name:N', sort='-x', title='CNEC'),
        tooltip=['cnec_name:N', 'avg_shadow_price:Q', 'avg_ram:Q', 'count:Q'],
        color=alt.Color('avg_shadow_price:Q', scale=alt.Scale(scheme='reds'))
    ).properties(
        title='Top 15 CNECs by Average Shadow Price',
        width=800,
        height=400
    )

    chart_cnecs
    return


@app.cell
def _(alt, cnecs_df):
    # Shadow Price Distribution
    chart_shadow = alt.Chart(cnecs_df.to_pandas()).mark_bar().encode(
        x=alt.X('shadow_price:Q', bin=alt.Bin(maxbins=50), title='Shadow Price (€/MWh)'),
        y=alt.Y('count()', title='Count'),
        tooltip=['shadow_price:Q', 'count()']
    ).properties(
        title='Shadow Price Distribution',
        width=800,
        height=300
    )

    chart_shadow
    return


@app.cell
def _(alt, cnecs_df, pl):
    # TSO Distribution
    tso_counts = (
        cnecs_df
        .group_by('tso')
        .agg(pl.len().alias('count'))
        .sort('count', descending=True)
    )

    chart_tso = alt.Chart(tso_counts.to_pandas()).mark_bar().encode(
        x=alt.X('count:Q', title='Number of Active Constraints'),
        y=alt.Y('tso:N', sort='-x', title='TSO'),
        tooltip=['tso:N', 'count:Q'],
        color=alt.value('steelblue')
    ).properties(
        title='Active Constraints by TSO',
        width=800,
        height=400
    )

    chart_tso
    return


@app.cell
def _(mo):
    mo.md("""### CNEC Network Impact Analysis""")
    return


@app.cell
def _(alt, cnecs_df, pl):
    # Analyze which zones are most affected by top CNECs
    # Select top 10 most binding CNECs
    top_10_cnecs = (
        cnecs_df
        .group_by('cnec_name')
        .agg(pl.col('shadow_price').mean().alias('avg_shadow_price'))
        .sort('avg_shadow_price', descending=True)
        .head(10)
        .get_column('cnec_name')
        .to_list()
    )

    # Get PTDF columns for impact analysis
    impact_ptdf_cols = [c for c in cnecs_df.columns if c.startswith('ptdf_')]

    # Calculate average absolute PTDF impact for top CNECs
    impact_data = []
    for cnec in top_10_cnecs:
        cnec_data = cnecs_df.filter(pl.col('cnec_name') == cnec)
        for ptdf_col in impact_ptdf_cols:
            zone = ptdf_col.replace('ptdf_', '')
            avg_abs_ptdf = cnec_data[ptdf_col].abs().mean()
            impact_data.append({
                'cnec_name': cnec[:40],  # Truncate long names
                'zone': zone,
                'avg_abs_ptdf': avg_abs_ptdf
            })

    impact_df = pl.DataFrame(impact_data)

    # Create heatmap showing CNEC-zone impact
    impact_heatmap = alt.Chart(impact_df.to_pandas()).mark_rect().encode(
        x=alt.X('zone:N', title='Zone'),
        y=alt.Y('cnec_name:N', title='CNEC (Top 10 by Shadow Price)'),
        color=alt.Color('avg_abs_ptdf:Q',
                       scale=alt.Scale(scheme='reds'),
                       title='Avg |PTDF|'),
        tooltip=['cnec_name:N', 'zone:N', alt.Tooltip('avg_abs_ptdf:Q', format='.4f')]
    ).properties(
        title='Network Impact: Which Zones Affect Each CNEC?',
        width=600,
        height=400
    )

    impact_heatmap
    return


@app.cell
def _(cnecs_df, mo):
    mo.md("## 3. PTDF Analysis")

    # Extract PTDF columns
    ptdf_cols = [c for c in cnecs_df.columns if c.startswith('ptdf_')]

    mo.md(f"**PTDF Zones**: {len(ptdf_cols)} zones - {', '.join([c.replace('ptdf_', '') for c in ptdf_cols])}")
    return (ptdf_cols,)


@app.cell
def _(cnecs_df, ptdf_cols):
    # PTDF Statistics
    ptdf_stats = cnecs_df.select(ptdf_cols).describe()
    ptdf_stats
    return


@app.cell
def _(mo):
    mo.md(
        """
    ## Data Quality Validation

    Checking for completeness, missing values, and data integrity:
    """
    )
    return


@app.cell
def _(cnecs_df, maxbex_df, mo, pl):
    # Calculate data completeness
    def check_completeness(df, name):
        total_cells = df.shape[0] * df.shape[1]
        null_cells = df.null_count().sum_horizontal()[0]
        completeness = (1 - null_cells / total_cells) * 100

        return {
            'Dataset': name,
            'Total Cells': total_cells,
            'Null Cells': null_cells,
            'Completeness %': f"{completeness:.2f}%"
        }

    completeness_report = [
        check_completeness(maxbex_df, 'MaxBEX (TARGET)'),
        check_completeness(cnecs_df, 'CNECs/PTDFs')
    ]

    mo.ui.table(pl.DataFrame(completeness_report).to_pandas())
    return (completeness_report,)


@app.cell
def _(completeness_report, mo):
    # Validation check
    all_complete = all(
        float(r['Completeness %'].rstrip('%')) >= 95.0
        for r in completeness_report
    )

    if all_complete:
        mo.md("✅ **All datasets meet >95% completeness threshold**")
    else:
        mo.md("⚠️ **Some datasets below 95% completeness - investigate missing data**")
    return


@app.cell
def _(mo):
    mo.md(
        """
    ## Next Steps

    After data exploration completion:

    1. **Day 2**: Feature engineering (75-85 features)
    2. **Day 3**: Zero-shot inference with Chronos 2
    3. **Day 4**: Performance evaluation and analysis
    4. **Day 5**: Documentation and handover

    ---

    **Note**: This notebook will be exported to JupyterLab format (.ipynb) for analyst handover.
    """
    )
    return


if __name__ == "__main__":
    app.run()