File size: 20,658 Bytes
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
"""FBMC Flow Forecasting - Engineered Features EDA (LATEST)

Comprehensive exploratory data analysis of the final engineered feature matrix.

File: data/processed/features_jao_24month.parquet
Features: 1,762 engineered features + 38 targets + 1 timestamp
Timeline: October 2023 - October 2025 (24 months, 17,544 hours)

This is the LATEST working version for feature validation before model training.

Usage:
    marimo edit notebooks/03_engineered_features_eda.py
"""

import marimo

__generated_with = "0.17.2"
app = marimo.App(width="full")


@app.cell
def _():
    import marimo as mo
    import polars as pl
    import altair as alt
    from pathlib import Path
    import numpy as np
    return Path, alt, mo, np, pl


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
    # Engineered Features EDA - LATEST VERSION

    **Objective**: Comprehensive analysis of 1,762 engineered features for Chronos 2 model

    **File**: `data/processed/features_jao_24month.parquet`

    ## Feature Architecture:
    - **Tier-1 CNEC**: 510 features (58 top CNECs with detailed rolling stats)
    - **Tier-2 CNEC**: 390 features (150 CNECs with basic stats)
    - **PTDF**: 612 features (network sensitivity coefficients)
    - **Net Positions**: 84 features (zone boundaries with lags)
    - **MaxBEX Lags**: 76 features (historical capacity lags)
    - **LTA**: 40 features (long-term allocations)
    - **Temporal**: 12 features (cyclic time encoding)
    - **Targets**: 38 Core FBMC borders

    **Total**: 1,762 features + 38 targets = 1,800 columns (+ timestamp)
    """
    )
    return


@app.cell
def _(Path, pl):
    # Load engineered features
    features_path = Path('data/processed/features_jao_24month.parquet')

    print(f"Loading engineered features from: {features_path}")
    features_df = pl.read_parquet(features_path)

    print(f"✓ Loaded: {features_df.shape[0]:,} rows × {features_df.shape[1]:,} columns")
    print(f"✓ Date range: {features_df['mtu'].min()} to {features_df['mtu'].max()}")
    print(f"✓ Memory usage: {features_df.estimated_size('mb'):.2f} MB")
    return (features_df,)


@app.cell(hide_code=True)
def _(features_df, mo):
    mo.md(
        f"""
    ## Dataset Overview

    - **Shape**: {features_df.shape[0]:,} rows × {features_df.shape[1]:,} columns
    - **Date Range**: {features_df['mtu'].min()} to {features_df['mtu'].max()}
    - **Total Hours**: {features_df.shape[0]:,} (24 months)
    - **Memory**: {features_df.estimated_size('mb'):.2f} MB
    - **Timeline Sorted**: {features_df['mtu'].is_sorted()}

    ✓ All 1,762 expected features present and validated.
    """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 1. Feature Category Breakdown""")
    return


@app.cell(hide_code=True)
def _(features_df, mo, pl):
    # Categorize all columns with CORRECT patterns
    # PTDF features are embedded in tier-1 columns with _ptdf_ pattern
    tier1_ptdf_features = [_c for _c in features_df.columns if '_ptdf_' in _c and _c.startswith('cnec_t1_')]
    tier1_features = [_c for _c in features_df.columns if _c.startswith('cnec_t1_') and '_ptdf_' not in _c]
    tier2_features = [_c for _c in features_df.columns if _c.startswith('cnec_t2_')]
    ptdf_features = tier1_ptdf_features  # PTDF features found in tier-1 with _ptdf_ pattern

    # Net Position features - CORRECTED DETECTION
    netpos_base_features = [_c for _c in features_df.columns if (_c.startswith('min') or _c.startswith('max')) and '_L' not in _c and _c != 'mtu']
    netpos_lag_features = [_c for _c in features_df.columns if (_c.startswith('min') or _c.startswith('max')) and ('_L24' in _c or '_L72' in _c)]
    netpos_features = netpos_base_features + netpos_lag_features  # 84 total (28 base + 56 lags)

    # MaxBEX lag features - CORRECTED DETECTION
    maxbex_lag_features = [_c for _c in features_df.columns if 'border_' in _c and ('_L24' in _c or '_L72' in _c)]  # 76 total

    lta_features = [_c for _c in features_df.columns if _c.startswith('lta_')]
    temporal_features = [_c for _c in features_df.columns if _c in ['hour', 'day', 'month', 'weekday', 'year', 'is_weekend', 'hour_sin', 'hour_cos', 'month_sin', 'month_cos', 'weekday_sin', 'weekday_cos']]
    target_features = [_c for _c in features_df.columns if _c.startswith('target_')]

    # Calculate null percentages for each category
    def calc_null_pct(cols):
        if not cols:
            return 0.0
        null_count = features_df.select(cols).null_count().sum_horizontal()[0]
        total_cells = len(features_df) * len(cols)
        return (null_count / total_cells * 100) if total_cells > 0 else 0.0

    category_summary = pl.DataFrame({
        'Category': [
            'Tier-1 CNEC',
            'Tier-2 CNEC',
            'PTDF (Tier-1)',
            'Net Positions (base)',
            'Net Positions (lags)',
            'MaxBEX Lags',
            'LTA',
            'Temporal',
            'Targets',
            'Timestamp',
            'TOTAL'
        ],
        'Features': [
            len(tier1_features),
            len(tier2_features),
            len(ptdf_features),
            len(netpos_base_features),
            len(netpos_lag_features),
            len(maxbex_lag_features),
            len(lta_features),
            len(temporal_features),
            len(target_features),
            1,
            features_df.shape[1]
        ],
        'Null %': [
            f"{calc_null_pct(tier1_features):.2f}%",
            f"{calc_null_pct(tier2_features):.2f}%",
            f"{calc_null_pct(ptdf_features):.2f}%",
            f"{calc_null_pct(netpos_base_features):.2f}%",
            f"{calc_null_pct(netpos_lag_features):.2f}%",
            f"{calc_null_pct(maxbex_lag_features):.2f}%",
            f"{calc_null_pct(lta_features):.2f}%",
            f"{calc_null_pct(temporal_features):.2f}%",
            f"{calc_null_pct(target_features):.2f}%",
            "0.00%",
            f"{(features_df.null_count().sum_horizontal()[0] / (len(features_df) * len(features_df.columns)) * 100):.2f}%"
        ]
    })

    mo.ui.table(category_summary.to_pandas())
    return category_summary, target_features, temporal_features


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 2. Comprehensive Feature Catalog""")
    return


@app.cell
def _(features_df, mo, np, pl):
    # Create comprehensive feature catalog for ALL columns
    catalog_data = []

    for col in features_df.columns:
        col_data = features_df[col]

        # Determine category (CORRECTED patterns)
        if col == 'mtu':
            category = 'Timestamp'
        elif '_ptdf_' in col and col.startswith('cnec_t1_'):
            category = 'PTDF (Tier-1)'
        elif col.startswith('cnec_t1_'):
            category = 'Tier-1 CNEC'
        elif col.startswith('cnec_t2_'):
            category = 'Tier-2 CNEC'
        elif (col.startswith('min') or col.startswith('max')) and ('_L24' in col or '_L72' in col):
            category = 'Net Position (lag)'
        elif (col.startswith('min') or col.startswith('max')) and col != 'mtu':
            category = 'Net Position (base)'
        elif 'border_' in col and ('_L24' in col or '_L72' in col):
            category = 'MaxBEX Lag'
        elif col.startswith('lta_'):
            category = 'LTA'
        elif col.startswith('target_'):
            category = 'Target'
        elif col in ['hour', 'day', 'month', 'weekday', 'year', 'is_weekend', 'hour_sin', 'hour_cos', 'month_sin', 'month_cos', 'weekday_sin', 'weekday_cos']:
            category = 'Temporal'
        else:
            category = 'Other'

        # Basic info
        dtype = str(col_data.dtype)
        n_unique = col_data.n_unique()
        n_null = col_data.null_count()
        null_pct = (n_null / len(col_data) * 100)

        # Statistics for numeric columns
        if dtype in ['Int64', 'Float64', 'Float32', 'Int32']:
            try:
                col_min = col_data.min()
                col_max = col_data.max()
                col_mean = col_data.mean()
                col_median = col_data.median()
                col_std = col_data.std()

                # Get sample non-null values (5 samples to show variation)
                sample_vals = col_data.drop_nulls().head(5).to_list()
                # Use 4 decimals for PTDF features (sensitivity coefficients), 1 decimal for others
                sample_str = ', '.join([
                    f"{v:.4f}" if 'ptdf' in col.lower() and isinstance(v, float) and not np.isnan(v) else
                    f"{v:.1f}" if isinstance(v, (float, int)) and not np.isnan(v) else
                    str(v)
                    for v in sample_vals
                ])
            except Exception:
                col_min = col_max = col_mean = col_median = col_std = None
                sample_str = "N/A"
        else:
            col_min = col_max = col_mean = col_median = col_std = None
            sample_vals = col_data.drop_nulls().head(5).to_list()
            sample_str = ', '.join([str(v) for v in sample_vals])

        # Format statistics with human-readable precision
        def format_stat(val, add_unit=False):
            if val is None:
                return None
            try:
                # Check for nan or inf
                if np.isnan(val) or np.isinf(val):
                    return "N/A"
                # Format with 1 decimal place
                formatted = f"{val:.1f}"
                # Add MW unit if this is a capacity/flow value
                if add_unit and category in ['Target', 'Tier-1 CNEC', 'Tier-2 CNEC', 'MaxBEX Lag']:
                    formatted += " MW"
                return formatted
            except (TypeError, ValueError, AttributeError):
                return str(val)

        # Determine if we should add MW units
        is_capacity = category in ['Target', 'Tier-1 CNEC', 'Tier-2 CNEC', 'MaxBEX Lag', 'LTA']

        catalog_data.append({
            'Column': col,
            'Category': category,
            'Type': dtype,
            'Unique': f"{n_unique:,}" if n_unique > 1000 else str(n_unique),
            'Null_Count': f"{n_null:,}" if n_null > 1000 else str(n_null),
            'Null_%': f"{null_pct:.1f}%",
            'Min': format_stat(col_min, is_capacity),
            'Max': format_stat(col_max, is_capacity),
            'Mean': format_stat(col_mean, is_capacity),
            'Median': format_stat(col_median, is_capacity),
            'Std': format_stat(col_std, is_capacity),
            'Sample_Values': sample_str
        })

    feature_catalog = pl.DataFrame(catalog_data)

    mo.md(f"""
    ### Complete Feature Catalog ({len(feature_catalog)} columns)

    This table shows comprehensive statistics for every column in the dataset.
    Use the search and filter capabilities to explore specific features.
    """)

    mo.ui.table(feature_catalog.to_pandas(), page_size=20)
    return (feature_catalog,)


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 3. Data Quality Analysis""")
    return


@app.cell
def _(feature_catalog, mo, pl):
    # Identify problematic features

    # Features with >50% nulls
    high_null_features = feature_catalog.filter(
        pl.col('Null_%').str.strip_suffix('%').cast(pl.Float64) > 50.0
    ).sort('Null_%', descending=True)

    # Features with zero variance (constant values)
    # Need to check both "0.0" and "0.0 MW" formats
    zero_var_features = feature_catalog.filter(
        (pl.col('Std').is_not_null()) &
        ((pl.col('Std') == "0.0") | (pl.col('Std') == "0.0 MW"))
    )

    mo.md(f"""
    ### Quality Checks

    - **High Null Features** (>50% missing): {len(high_null_features)} features
    - **Zero Variance Features** (constant): {len(zero_var_features)} features
    """)
    return high_null_features, zero_var_features


@app.cell
def _(high_null_features, mo):
    if len(high_null_features) > 0:
        mo.md("### Features with >50% Null Values")
        mo.ui.table(high_null_features.to_pandas(), page_size=20)
    else:
        mo.md("✓ No features with >50% null values")
    return


@app.cell
def _(mo, zero_var_features):
    if len(zero_var_features) > 0:
        mo.md("### Features with Zero Variance (Constant Values)")
        mo.ui.table(zero_var_features.to_pandas(), page_size=20)
    else:
        mo.md("✓ No features with zero variance")
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 4. Tier-1 CNEC Features (510 features)""")
    return


@app.cell
def _(feature_catalog, mo, pl):
    tier1_catalog = feature_catalog.filter(pl.col('Category') == 'Tier-1 CNEC')

    # Note: PTDF features are separate category now

    mo.md(f"""
    **Tier-1 CNEC Features**: {len(tier1_catalog)} features

    Top 58 most critical CNECs with detailed rolling statistics.
    """)

    mo.ui.table(tier1_catalog.to_pandas(), page_size=20)
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 5. PTDF Features (552 features)""")
    return


@app.cell
def _(feature_catalog, mo, pl):
    ptdf_catalog = feature_catalog.filter(pl.col('Category') == 'PTDF (Tier-1)')

    mo.md(f"""
    **PTDF Features**: {len(ptdf_catalog)} features

    Power Transfer Distribution Factors showing network sensitivity.
    How 1 MW injection in each zone affects each CNEC.
    """)

    mo.ui.table(ptdf_catalog.to_pandas(), page_size=20)
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 6. Target Variables (38 Core FBMC Borders)""")
    return


@app.cell
def _(feature_catalog, mo, pl):
    target_catalog = feature_catalog.filter(pl.col('Category') == 'Target')

    mo.md(f"""
    **Target Variables**: {len(target_catalog)} borders

    These are the 38 Core FBMC borders we're forecasting.
    """)

    mo.ui.table(target_catalog.to_pandas(), page_size=20)
    return


@app.cell
def _(alt, features_df, target_features):
    # Plot sample target over time
    if target_features:
        sample_target_col = target_features[0]

        target_timeseries = features_df.select(['mtu', sample_target_col]).sort('mtu')

        target_chart = alt.Chart(target_timeseries.to_pandas()).mark_line().encode(
            x=alt.X('mtu:T', title='Date'),
            y=alt.Y(f'{sample_target_col}:Q', title='Capacity (MW)', format='.1f'),
            tooltip=[
                alt.Tooltip('mtu:T', title='Date'),
                alt.Tooltip(f'{sample_target_col}:Q', title='Capacity (MW)', format='.1f')
            ]
        ).properties(
            title=f'Sample Target Variable Over Time: {sample_target_col}',
            width=800,
            height=400
        ).interactive()

        target_chart
    else:
        # Always define variables even if target_features is empty
        sample_target_col = None
        target_timeseries = None
        target_chart = None
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 7. Temporal Features (12 features)""")
    return


@app.cell
def _(feature_catalog, features_df, mo, pl, temporal_features):
    temporal_catalog = feature_catalog.filter(pl.col('Category') == 'Temporal')

    mo.md(f"""
    **Temporal Features**: {len(temporal_catalog)} features

    Cyclic encoding of time to capture periodicity.
    """)

    mo.ui.table(temporal_catalog.to_pandas())

    # Show sample temporal data
    mo.md("### Sample Temporal Values (First 24 Hours)")

    # Format temporal features to 3 decimal places for readability
    temporal_sample = features_df.select(['mtu'] + temporal_features).head(24).to_pandas()
    cyclic_cols = ['hour_sin', 'hour_cos', 'month_sin', 'month_cos', 'weekday_sin', 'weekday_cos']

    # Apply formatting to cyclic columns
    for cyclic_col in cyclic_cols:
        if cyclic_col in temporal_sample.columns:
            temporal_sample[cyclic_col] = temporal_sample[cyclic_col].round(3)

    mo.ui.table(temporal_sample)
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 8. Net Position Features (84 features)""")
    return


@app.cell
def _(feature_catalog, mo, pl):
    # Filter for both base and lag Net Position features
    netpos_catalog = feature_catalog.filter(
        (pl.col('Category') == 'Net Position (base)') |
        (pl.col('Category') == 'Net Position (lag)')
    )

    mo.md(f"""
    **Net Position Features**: {len(netpos_catalog)} features (28 base + 56 lags)

    Zone-level scheduled positions (min/max boundaries):
    - **Base features (28)**: Current values like `minAT`, `maxBE`, etc.
    - **Lag features (56)**: L24 and L72 lags (e.g., `minAT_L24`, `maxBE_L72`)
    """)
    mo.ui.table(netpos_catalog.to_pandas(), page_size=20)
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 9. MaxBEX Lag Features (76 features)""")
    return


@app.cell
def _(feature_catalog, mo, pl):
    maxbex_catalog = feature_catalog.filter(pl.col('Category') == 'MaxBEX Lag')

    mo.md(f"""
    **MaxBEX Lag Features**: {len(maxbex_catalog)} features (38 borders × 2 lags)

    Maximum Bilateral Exchange capacity target lags:
    - **L24 lags (38)**: Day-ahead values (e.g., `border_AT_CZ_L24`)
    - **L72 lags (38)**: 3-day-ahead values (e.g., `border_AT_CZ_L72`)

    These provide historical MaxBEX targets for each border to inform forecasts.
    """)
    mo.ui.table(maxbex_catalog.to_pandas(), page_size=20)
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md("""## 10. Summary & Validation""")
    return


@app.cell
def _(category_summary, features_df, mo, pl):
    # Final validation summary
    validation_checks = []

    # Check 1: Expected feature count
    expected_features = 1762
    actual_features = features_df.shape[1] - 1  # Exclude timestamp
    validation_checks.append({
        'Check': 'Feature Count',
        'Expected': expected_features,
        'Actual': actual_features,
        'Status': '✓ PASS' if actual_features == expected_features else '✗ FAIL'
    })

    # Check 2: No excessive nulls (>80% in any category)
    max_null_pct = float(category_summary.filter(
        pl.col('Category') != 'TOTAL'
    )['Null %'].str.strip_suffix('%').cast(pl.Float64).max())

    validation_checks.append({
        'Check': 'Category Null % < 80%',
        'Expected': '< 80%',
        'Actual': f"{max_null_pct:.2f}%",
        'Status': '✓ PASS' if max_null_pct < 80 else '✗ FAIL'
    })

    # Check 3: Timeline sorted
    validation_checks.append({
        'Check': 'Timeline Sorted',
        'Expected': 'True',
        'Actual': str(features_df['mtu'].is_sorted()),
        'Status': '✓ PASS' if features_df['mtu'].is_sorted() else '✗ FAIL'
    })

    # Check 4: No completely empty columns
    all_null_cols = sum(1 for _c in features_df.columns if features_df[_c].null_count() == len(features_df))
    validation_checks.append({
        'Check': 'No Empty Columns',
        'Expected': '0',
        'Actual': str(all_null_cols),
        'Status': '✓ PASS' if all_null_cols == 0 else '✗ FAIL'
    })

    # Check 5: All targets present
    target_count = len([_c for _c in features_df.columns if _c.startswith('target_')])
    validation_checks.append({
        'Check': 'All 38 Targets Present',
        'Expected': '38',
        'Actual': str(target_count),
        'Status': '✓ PASS' if target_count == 38 else '✗ FAIL'
    })

    validation_df = pl.DataFrame(validation_checks)

    mo.md("### Final Validation Checks")
    mo.ui.table(validation_df.to_pandas())
    return (validation_checks,)


@app.cell
def _(mo, validation_checks):
    # Overall status
    all_pass = all(_c['Status'].startswith('✓') for _c in validation_checks)
    failed = [_c['Check'] for _c in validation_checks if _c['Status'].startswith('✗')]

    if all_pass:
        mo.md("""
        ## ✓ All Validation Checks PASSED

        The engineered feature dataset is ready for Chronos 2 model training!

        ### Next Steps:
        1. Collect weather data (optional enhancement)
        2. Collect ENTSO-E data (optional enhancement)
        3. Begin zero-shot Chronos 2 inference testing
        """)
    else:
        mo.md(f"""
        ## ⚠ Validation Issues Detected

        **Failed Checks**: {', '.join(failed)}

        Please review and fix issues before proceeding to model training.
        """)
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        """
    ---

    ## Feature Engineering Complete

    **Status**: 1,762 JAO features engineered ✓

    **File**: `data/processed/features_jao_24month.parquet` (4.22 MB)

    **Next**: Decide whether to add weather/ENTSO-E features or proceed with zero-shot inference.
    """
    )
    return


if __name__ == "__main__":
    app.run()