File size: 11,224 Bytes
dcc56de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import marimo

__generated_with = "0.9.30"
app = marimo.App(width="medium")


@app.cell
def imports_and_setup():
    """Import libraries and set up paths."""
    import marimo as mo
    import polars as pl
    import altair as alt
    from pathlib import Path
    from datetime import datetime

    # Set up absolute paths
    project_root = Path(__file__).parent.parent

    return mo, pl, alt, Path, datetime, project_root


@app.cell
def load_september_2025_data(pl, project_root):
    """Load September 2025 forecast results and actuals."""

    # Load actuals from HuggingFace dataset (ground truth)
    print('[INFO] Loading actuals from HuggingFace dataset...')
    from datasets import load_dataset
    import os

    dataset = load_dataset('evgueni-p/fbmc-features-24month', split='train', token=os.environ.get('HF_TOKEN'))
    df_actuals_full = pl.from_arrow(dataset.data.table)
    print(f'[INFO] HF dataset loaded: {df_actuals_full.shape}')

    # Load forecast results
    forecast_path = project_root / 'results' / 'september_2025_forecast_504h.parquet'

    if not forecast_path.exists():
        raise FileNotFoundError(f'Forecast file not found: {forecast_path}. Run September 2025 forecast first.')

    df_forecast_full = pl.read_parquet(forecast_path)
    print(f'[INFO] Forecast loaded: {df_forecast_full.shape}')
    print(f'[INFO] Forecast dates: {df_forecast_full["timestamp"].min()} to {df_forecast_full["timestamp"].max()}')

    # Filter actuals to September 2025 period (Aug 18 - Sept 15)
    start_date = datetime(2025, 8, 18)  # 2 weeks before forecast
    end_date = datetime(2025, 9, 16)     # Through end of forecast period

    df_actuals_filtered = df_actuals_full.filter(
        (pl.col('timestamp') >= start_date) &
        (pl.col('timestamp') < end_date)
    )

    print(f'[INFO] Actuals filtered: {df_actuals_filtered.shape[0]} hours (Aug 18 - Sept 15, 2025)')

    return df_actuals_full, df_actuals_filtered, df_forecast_full, start_date, end_date


@app.cell
def prepare_unified_dataframe(pl, df_actuals_filtered, df_forecast_full):
    """Prepare unified dataframe with forecast and actual pairs for all borders."""

    # Extract border names from forecast columns
    forecast_cols_list = [col for col in df_forecast_full.columns if col.endswith('_median')]
    border_names_list = [col.replace('_median', '') for col in forecast_cols_list]

    print(f'[INFO] Processing {len(border_names_list)} borders...')

    # Start with timestamp from actuals
    df_unified_data = df_actuals_filtered.select('timestamp')

    # Add actual and forecast for each border
    for border in border_names_list:
        actual_col_source = f'target_border_{border}'
        forecast_col_source = f'{border}_median'

        # Add actuals
        if actual_col_source in df_actuals_filtered.columns:
            df_unified_data = df_unified_data.with_columns(
                df_actuals_filtered[actual_col_source].alias(f'actual_{border}')
            )
        else:
            print(f'[WARNING] Actual column missing: {actual_col_source}')
            df_unified_data = df_unified_data.with_columns(pl.lit(None).alias(f'actual_{border}'))

        # Add forecasts (join on timestamp)
        if forecast_col_source in df_forecast_full.columns:
            df_forecast_subset = df_forecast_full.select(['timestamp', forecast_col_source])
            df_unified_data = df_unified_data.join(
                df_forecast_subset,
                on='timestamp',
                how='left'
            ).rename({forecast_col_source: f'forecast_{border}'})
        else:
            print(f'[WARNING] Forecast column missing: {forecast_col_source}')
            df_unified_data = df_unified_data.with_columns(pl.lit(None).alias(f'forecast_{border}'))

    print(f'[INFO] Unified data prepared: {df_unified_data.shape}')

    # Validate no data leakage - check that forecasts don't perfectly match actuals
    sample_border = border_names_list[0]
    forecast_col_check = f'forecast_{sample_border}'
    actual_col_check = f'actual_{sample_border}'

    if forecast_col_check in df_unified_data.columns and actual_col_check in df_unified_data.columns:
        _forecast_start_check = datetime(2025, 9, 2)
        _df_forecast_check = df_unified_data.filter(pl.col('timestamp') >= _forecast_start_check)

        if len(_df_forecast_check) > 0:
            mae_check = (_df_forecast_check[forecast_col_check] - _df_forecast_check[actual_col_check]).abs().mean()
            if mae_check == 0:
                raise ValueError(f'DATA LEAKAGE DETECTED: Forecasts perfectly match actuals (MAE=0) for {sample_border}!')

    print('[INFO] Data leakage check passed - forecasts differ from actuals')

    return df_unified_data, border_names_list


@app.cell
def create_border_selector(mo, border_names_list):
    """Create interactive border selection dropdown."""

    border_selector_widget = mo.ui.dropdown(
        options={border: border for border in sorted(border_names_list)},
        value='AT_CZ',
        label='Select Border:'
    )

    return border_selector_widget,


@app.cell
def display_border_selector(mo, border_selector_widget):
    """Display the border selector UI."""
    mo.md(f"""
    ## Forecast Validation: September 2025

    **Select a border to view:**
    {border_selector_widget}

    Chart shows:
    - **2 weeks historical** (Aug 18-31, 2025): Actual flows only
    - **2 weeks forecast** (Sept 2-15, 2025): Forecast vs Actual comparison
    - **Context**: 504 hours (21 days)
    """)


@app.cell
def filter_data_for_selected_border(pl, df_unified_data, border_selector_widget, start_date):
    """Filter data for the selected border."""

    selected_border_name = border_selector_widget.value

    # Extract columns for selected border
    actual_col_name = f'actual_{selected_border_name}'
    forecast_col_name = f'forecast_{selected_border_name}'

    # Check if columns exist
    if actual_col_name not in df_unified_data.columns:
        df_selected_border = None
        print(f'[ERROR] Actual column {actual_col_name} not found')
    else:
        df_selected_border = df_unified_data.select([
            'timestamp',
            pl.col(actual_col_name).alias('actual'),
            pl.col(forecast_col_name).alias('forecast') if forecast_col_name in df_unified_data.columns else pl.lit(None).alias('forecast')
        ])

        # Add period marker (historical vs forecast)
        forecast_start = datetime(2025, 9, 2)
        df_selected_border = df_selected_border.with_columns(
            pl.when(pl.col('timestamp') >= forecast_start)
            .then(pl.lit('Forecast Period'))
            .otherwise(pl.lit('Historical'))
            .alias('period')
        )

    return df_selected_border, selected_border_name, forecast_start


@app.cell
def create_time_series_chart(alt, df_selected_border, selected_border_name, forecast_start):
    """Create Altair time series visualization."""

    if df_selected_border is None:
        chart_time_series = alt.Chart().mark_text(text='No data available', size=20)
    else:
        # Convert to pandas for Altair (CLAUDE.md Rule #37)
        df_plot = df_selected_border.to_pandas()

        # Create base chart
        base = alt.Chart(df_plot).encode(
            x=alt.X('timestamp:T', title='Date', axis=alt.Axis(format='%b %d'))
        )

        # Actual line (blue, solid)
        line_actual = base.mark_line(color='blue', strokeWidth=2).encode(
            y=alt.Y('actual:Q', title='Flow (MW)', scale=alt.Scale(zero=False)),
            tooltip=[
                alt.Tooltip('timestamp:T', title='Time', format='%Y-%m-%d %H:%M'),
                alt.Tooltip('actual:Q', title='Actual (MW)', format='.1f')
            ]
        )

        # Forecast line (orange, dashed) - only for forecast period
        df_plot_forecast = df_plot[df_plot['period'] == 'Forecast Period']

        if len(df_plot_forecast) > 0 and df_plot_forecast['forecast'].notna().any():
            line_forecast = alt.Chart(df_plot_forecast).mark_line(
                color='orange',
                strokeWidth=2,
                strokeDash=[5, 5]
            ).encode(
                x=alt.X('timestamp:T'),
                y=alt.Y('forecast:Q'),
                tooltip=[
                    alt.Tooltip('timestamp:T', title='Time', format='%Y-%m-%d %H:%M'),
                    alt.Tooltip('forecast:Q', title='Forecast (MW)', format='.1f'),
                    alt.Tooltip('actual:Q', title='Actual (MW)', format='.1f')
                ]
            )
        else:
            line_forecast = alt.Chart().mark_point()  # Empty chart

        # Vertical line at forecast start
        rule_forecast_start = alt.Chart(
            alt.Data(values=[{'x': forecast_start}])
        ).mark_rule(color='red', strokeDash=[3, 3], strokeWidth=1).encode(
            x='x:T'
        )

        # Combine layers
        chart_time_series = (line_actual + line_forecast + rule_forecast_start).properties(
            width=800,
            height=400,
            title=f'Border: {selected_border_name} | Hourly Flows (Aug 18 - Sept 15, 2025)'
        ).configure_axis(
            labelFontSize=12,
            titleFontSize=14
        ).configure_title(
            fontSize=16
        )

    return chart_time_series,


@app.cell
def calculate_summary_statistics(pl, df_selected_border, selected_border_name, forecast_start):
    """Calculate summary statistics for the selected border."""

    if df_selected_border is None:
        stats_summary_text = 'No data available'
    else:
        # Filter to forecast period only
        df_forecast_period = df_selected_border.filter(
            pl.col('timestamp') >= forecast_start
        )

        if len(df_forecast_period) == 0 or df_forecast_period['forecast'].is_null().all():
            stats_summary_text = 'No forecast data available for this period'
        else:
            # Calculate MAE
            mae_value = (
                (df_forecast_period['forecast'] - df_forecast_period['actual']).abs().mean()
            )

            # Forecast variation
            forecast_values = df_forecast_period['forecast'].drop_nulls()
            unique_count = forecast_values.n_unique()
            std_value = forecast_values.std()

            # Actual variation (for reference)
            actual_values = df_forecast_period['actual'].drop_nulls()
            actual_std = actual_values.std()

            stats_summary_text = f"""
### Forecast Quality Statistics

**Border**: {selected_border_name}
**Period**: September 2-15, 2025 (336 hours)
**Context**: 504 hours (21 days)

**Accuracy Metrics:**
- **MAE**: {mae_value:.2f} MW
- Forecast variation: {unique_count} unique values, StdDev = {std_value:.2f} MW
- Actual variation: StdDev = {actual_std:.2f} MW

**Interpretation:**
- MAE < 50 MW: Excellent
- MAE 50-100 MW: Good
- MAE > 100 MW: Needs improvement
"""

    return stats_summary_text,


@app.cell
def display_chart_and_stats(mo, chart_time_series, stats_summary_text):
    """Display the chart and statistics."""
    mo.vstack([
        chart_time_series,
        mo.md(stats_summary_text)
    ])


if __name__ == "__main__":
    app.run()