Spaces:
Sleeping
Sleeping
File size: 11,224 Bytes
dcc56de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import marimo
__generated_with = "0.9.30"
app = marimo.App(width="medium")
@app.cell
def imports_and_setup():
"""Import libraries and set up paths."""
import marimo as mo
import polars as pl
import altair as alt
from pathlib import Path
from datetime import datetime
# Set up absolute paths
project_root = Path(__file__).parent.parent
return mo, pl, alt, Path, datetime, project_root
@app.cell
def load_september_2025_data(pl, project_root):
"""Load September 2025 forecast results and actuals."""
# Load actuals from HuggingFace dataset (ground truth)
print('[INFO] Loading actuals from HuggingFace dataset...')
from datasets import load_dataset
import os
dataset = load_dataset('evgueni-p/fbmc-features-24month', split='train', token=os.environ.get('HF_TOKEN'))
df_actuals_full = pl.from_arrow(dataset.data.table)
print(f'[INFO] HF dataset loaded: {df_actuals_full.shape}')
# Load forecast results
forecast_path = project_root / 'results' / 'september_2025_forecast_504h.parquet'
if not forecast_path.exists():
raise FileNotFoundError(f'Forecast file not found: {forecast_path}. Run September 2025 forecast first.')
df_forecast_full = pl.read_parquet(forecast_path)
print(f'[INFO] Forecast loaded: {df_forecast_full.shape}')
print(f'[INFO] Forecast dates: {df_forecast_full["timestamp"].min()} to {df_forecast_full["timestamp"].max()}')
# Filter actuals to September 2025 period (Aug 18 - Sept 15)
start_date = datetime(2025, 8, 18) # 2 weeks before forecast
end_date = datetime(2025, 9, 16) # Through end of forecast period
df_actuals_filtered = df_actuals_full.filter(
(pl.col('timestamp') >= start_date) &
(pl.col('timestamp') < end_date)
)
print(f'[INFO] Actuals filtered: {df_actuals_filtered.shape[0]} hours (Aug 18 - Sept 15, 2025)')
return df_actuals_full, df_actuals_filtered, df_forecast_full, start_date, end_date
@app.cell
def prepare_unified_dataframe(pl, df_actuals_filtered, df_forecast_full):
"""Prepare unified dataframe with forecast and actual pairs for all borders."""
# Extract border names from forecast columns
forecast_cols_list = [col for col in df_forecast_full.columns if col.endswith('_median')]
border_names_list = [col.replace('_median', '') for col in forecast_cols_list]
print(f'[INFO] Processing {len(border_names_list)} borders...')
# Start with timestamp from actuals
df_unified_data = df_actuals_filtered.select('timestamp')
# Add actual and forecast for each border
for border in border_names_list:
actual_col_source = f'target_border_{border}'
forecast_col_source = f'{border}_median'
# Add actuals
if actual_col_source in df_actuals_filtered.columns:
df_unified_data = df_unified_data.with_columns(
df_actuals_filtered[actual_col_source].alias(f'actual_{border}')
)
else:
print(f'[WARNING] Actual column missing: {actual_col_source}')
df_unified_data = df_unified_data.with_columns(pl.lit(None).alias(f'actual_{border}'))
# Add forecasts (join on timestamp)
if forecast_col_source in df_forecast_full.columns:
df_forecast_subset = df_forecast_full.select(['timestamp', forecast_col_source])
df_unified_data = df_unified_data.join(
df_forecast_subset,
on='timestamp',
how='left'
).rename({forecast_col_source: f'forecast_{border}'})
else:
print(f'[WARNING] Forecast column missing: {forecast_col_source}')
df_unified_data = df_unified_data.with_columns(pl.lit(None).alias(f'forecast_{border}'))
print(f'[INFO] Unified data prepared: {df_unified_data.shape}')
# Validate no data leakage - check that forecasts don't perfectly match actuals
sample_border = border_names_list[0]
forecast_col_check = f'forecast_{sample_border}'
actual_col_check = f'actual_{sample_border}'
if forecast_col_check in df_unified_data.columns and actual_col_check in df_unified_data.columns:
_forecast_start_check = datetime(2025, 9, 2)
_df_forecast_check = df_unified_data.filter(pl.col('timestamp') >= _forecast_start_check)
if len(_df_forecast_check) > 0:
mae_check = (_df_forecast_check[forecast_col_check] - _df_forecast_check[actual_col_check]).abs().mean()
if mae_check == 0:
raise ValueError(f'DATA LEAKAGE DETECTED: Forecasts perfectly match actuals (MAE=0) for {sample_border}!')
print('[INFO] Data leakage check passed - forecasts differ from actuals')
return df_unified_data, border_names_list
@app.cell
def create_border_selector(mo, border_names_list):
"""Create interactive border selection dropdown."""
border_selector_widget = mo.ui.dropdown(
options={border: border for border in sorted(border_names_list)},
value='AT_CZ',
label='Select Border:'
)
return border_selector_widget,
@app.cell
def display_border_selector(mo, border_selector_widget):
"""Display the border selector UI."""
mo.md(f"""
## Forecast Validation: September 2025
**Select a border to view:**
{border_selector_widget}
Chart shows:
- **2 weeks historical** (Aug 18-31, 2025): Actual flows only
- **2 weeks forecast** (Sept 2-15, 2025): Forecast vs Actual comparison
- **Context**: 504 hours (21 days)
""")
@app.cell
def filter_data_for_selected_border(pl, df_unified_data, border_selector_widget, start_date):
"""Filter data for the selected border."""
selected_border_name = border_selector_widget.value
# Extract columns for selected border
actual_col_name = f'actual_{selected_border_name}'
forecast_col_name = f'forecast_{selected_border_name}'
# Check if columns exist
if actual_col_name not in df_unified_data.columns:
df_selected_border = None
print(f'[ERROR] Actual column {actual_col_name} not found')
else:
df_selected_border = df_unified_data.select([
'timestamp',
pl.col(actual_col_name).alias('actual'),
pl.col(forecast_col_name).alias('forecast') if forecast_col_name in df_unified_data.columns else pl.lit(None).alias('forecast')
])
# Add period marker (historical vs forecast)
forecast_start = datetime(2025, 9, 2)
df_selected_border = df_selected_border.with_columns(
pl.when(pl.col('timestamp') >= forecast_start)
.then(pl.lit('Forecast Period'))
.otherwise(pl.lit('Historical'))
.alias('period')
)
return df_selected_border, selected_border_name, forecast_start
@app.cell
def create_time_series_chart(alt, df_selected_border, selected_border_name, forecast_start):
"""Create Altair time series visualization."""
if df_selected_border is None:
chart_time_series = alt.Chart().mark_text(text='No data available', size=20)
else:
# Convert to pandas for Altair (CLAUDE.md Rule #37)
df_plot = df_selected_border.to_pandas()
# Create base chart
base = alt.Chart(df_plot).encode(
x=alt.X('timestamp:T', title='Date', axis=alt.Axis(format='%b %d'))
)
# Actual line (blue, solid)
line_actual = base.mark_line(color='blue', strokeWidth=2).encode(
y=alt.Y('actual:Q', title='Flow (MW)', scale=alt.Scale(zero=False)),
tooltip=[
alt.Tooltip('timestamp:T', title='Time', format='%Y-%m-%d %H:%M'),
alt.Tooltip('actual:Q', title='Actual (MW)', format='.1f')
]
)
# Forecast line (orange, dashed) - only for forecast period
df_plot_forecast = df_plot[df_plot['period'] == 'Forecast Period']
if len(df_plot_forecast) > 0 and df_plot_forecast['forecast'].notna().any():
line_forecast = alt.Chart(df_plot_forecast).mark_line(
color='orange',
strokeWidth=2,
strokeDash=[5, 5]
).encode(
x=alt.X('timestamp:T'),
y=alt.Y('forecast:Q'),
tooltip=[
alt.Tooltip('timestamp:T', title='Time', format='%Y-%m-%d %H:%M'),
alt.Tooltip('forecast:Q', title='Forecast (MW)', format='.1f'),
alt.Tooltip('actual:Q', title='Actual (MW)', format='.1f')
]
)
else:
line_forecast = alt.Chart().mark_point() # Empty chart
# Vertical line at forecast start
rule_forecast_start = alt.Chart(
alt.Data(values=[{'x': forecast_start}])
).mark_rule(color='red', strokeDash=[3, 3], strokeWidth=1).encode(
x='x:T'
)
# Combine layers
chart_time_series = (line_actual + line_forecast + rule_forecast_start).properties(
width=800,
height=400,
title=f'Border: {selected_border_name} | Hourly Flows (Aug 18 - Sept 15, 2025)'
).configure_axis(
labelFontSize=12,
titleFontSize=14
).configure_title(
fontSize=16
)
return chart_time_series,
@app.cell
def calculate_summary_statistics(pl, df_selected_border, selected_border_name, forecast_start):
"""Calculate summary statistics for the selected border."""
if df_selected_border is None:
stats_summary_text = 'No data available'
else:
# Filter to forecast period only
df_forecast_period = df_selected_border.filter(
pl.col('timestamp') >= forecast_start
)
if len(df_forecast_period) == 0 or df_forecast_period['forecast'].is_null().all():
stats_summary_text = 'No forecast data available for this period'
else:
# Calculate MAE
mae_value = (
(df_forecast_period['forecast'] - df_forecast_period['actual']).abs().mean()
)
# Forecast variation
forecast_values = df_forecast_period['forecast'].drop_nulls()
unique_count = forecast_values.n_unique()
std_value = forecast_values.std()
# Actual variation (for reference)
actual_values = df_forecast_period['actual'].drop_nulls()
actual_std = actual_values.std()
stats_summary_text = f"""
### Forecast Quality Statistics
**Border**: {selected_border_name}
**Period**: September 2-15, 2025 (336 hours)
**Context**: 504 hours (21 days)
**Accuracy Metrics:**
- **MAE**: {mae_value:.2f} MW
- Forecast variation: {unique_count} unique values, StdDev = {std_value:.2f} MW
- Actual variation: StdDev = {actual_std:.2f} MW
**Interpretation:**
- MAE < 50 MW: Excellent
- MAE 50-100 MW: Good
- MAE > 100 MW: Needs improvement
"""
return stats_summary_text,
@app.cell
def display_chart_and_stats(mo, chart_time_series, stats_summary_text):
"""Display the chart and statistics."""
mo.vstack([
chart_time_series,
mo.md(stats_summary_text)
])
if __name__ == "__main__":
app.run()
|