Spaces:
Sleeping
Sleeping
Evgueni Poloukarov
commited on
Commit
·
2dc6653
1
Parent(s):
7d5b63d
feat: add comprehensive diagnostic endpoint for Space debugging
Browse files- app.py +51 -0
- diagnostic.py +187 -0
app.py
CHANGED
|
@@ -67,6 +67,48 @@ def forecast_api(run_date_str, forecast_type):
|
|
| 67 |
return error_path
|
| 68 |
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# Build Gradio interface
|
| 71 |
with gr.Blocks(title="FBMC Chronos-2 Forecasting") as demo:
|
| 72 |
gr.Markdown("""
|
|
@@ -118,6 +160,15 @@ with gr.Blocks(title="FBMC Chronos-2 Forecasting") as demo:
|
|
| 118 |
- Precision: bfloat16
|
| 119 |
""")
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
# Wire up the interface
|
| 122 |
submit_btn.click(
|
| 123 |
fn=forecast_api,
|
|
|
|
| 67 |
return error_path
|
| 68 |
|
| 69 |
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def run_diagnostic():
|
| 73 |
+
"""Run comprehensive diagnostic tests. Returns path to report file."""
|
| 74 |
+
import subprocess
|
| 75 |
+
import sys
|
| 76 |
+
|
| 77 |
+
output_path = "/tmp/diagnostic_report.txt"
|
| 78 |
+
|
| 79 |
+
try:
|
| 80 |
+
result = subprocess.run(
|
| 81 |
+
[sys.executable, "diagnostic.py"],
|
| 82 |
+
capture_output=True,
|
| 83 |
+
text=True,
|
| 84 |
+
timeout=600
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
with open(output_path, 'w') as f:
|
| 88 |
+
f.write("=== DIAGNOSTIC REPORT ===
|
| 89 |
+
|
| 90 |
+
")
|
| 91 |
+
f.write("STDOUT:
|
| 92 |
+
" + result.stdout)
|
| 93 |
+
f.write("
|
| 94 |
+
|
| 95 |
+
STDERR:
|
| 96 |
+
" + result.stderr)
|
| 97 |
+
f.write(f"
|
| 98 |
+
|
| 99 |
+
Return code: {result.returncode}
|
| 100 |
+
")
|
| 101 |
+
|
| 102 |
+
print(f"Diagnostic completed: {output_path}")
|
| 103 |
+
except Exception as e:
|
| 104 |
+
with open(output_path, 'w') as f:
|
| 105 |
+
f.write(f"Diagnostic ERROR: {str(e)}
|
| 106 |
+
")
|
| 107 |
+
import traceback
|
| 108 |
+
f.write(traceback.format_exc())
|
| 109 |
+
|
| 110 |
+
return output_path
|
| 111 |
+
|
| 112 |
# Build Gradio interface
|
| 113 |
with gr.Blocks(title="FBMC Chronos-2 Forecasting") as demo:
|
| 114 |
gr.Markdown("""
|
|
|
|
| 160 |
- Precision: bfloat16
|
| 161 |
""")
|
| 162 |
|
| 163 |
+
|
| 164 |
+
gr.Markdown("---")
|
| 165 |
+
gr.Markdown("### Diagnostics")
|
| 166 |
+
with gr.Row():
|
| 167 |
+
diagnostic_btn = gr.Button("Run Diagnostics", variant="secondary")
|
| 168 |
+
diagnostic_output = gr.File(label="Diagnostic Report", type="filepath")
|
| 169 |
+
|
| 170 |
+
diagnostic_btn.click(fn=run_diagnostic, inputs=[], outputs=diagnostic_output)
|
| 171 |
+
|
| 172 |
# Wire up the interface
|
| 173 |
submit_btn.click(
|
| 174 |
fn=forecast_api,
|
diagnostic.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Diagnostic script to test inference pipeline components
|
| 4 |
+
Run this in the Space environment to identify issues
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import sys
|
| 8 |
+
import os
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
|
| 11 |
+
print("="*60)
|
| 12 |
+
print("FBMC CHRONOS-2 DIAGNOSTIC SCRIPT")
|
| 13 |
+
print("="*60)
|
| 14 |
+
|
| 15 |
+
# Test 1: Python environment
|
| 16 |
+
print("\n[1] Python Environment")
|
| 17 |
+
print(f" Python version: {sys.version}")
|
| 18 |
+
print(f" Python path: {sys.executable}")
|
| 19 |
+
|
| 20 |
+
# Test 2: Import dependencies
|
| 21 |
+
print("\n[2] Importing Dependencies")
|
| 22 |
+
try:
|
| 23 |
+
import torch
|
| 24 |
+
print(f" PyTorch: {torch.__version__}")
|
| 25 |
+
print(f" CUDA available: {torch.cuda.is_available()}")
|
| 26 |
+
if torch.cuda.is_available():
|
| 27 |
+
print(f" CUDA device: {torch.cuda.get_device_name(0)}")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f" PyTorch ERROR: {e}")
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
import polars as pl
|
| 33 |
+
print(f" Polars: {pl.__version__}")
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f" Polars ERROR: {e}")
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
import numpy as np
|
| 39 |
+
print(f" NumPy: {np.__version__}")
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(f" NumPy ERROR: {e}")
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
from chronos import ChronosPipeline
|
| 45 |
+
print(f" Chronos: OK")
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f" Chronos ERROR: {e}")
|
| 48 |
+
|
| 49 |
+
try:
|
| 50 |
+
from datasets import load_dataset
|
| 51 |
+
print(f" HF Datasets: OK")
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f" HF Datasets ERROR: {e}")
|
| 54 |
+
|
| 55 |
+
# Test 3: Environment variables
|
| 56 |
+
print("\n[3] Environment Variables")
|
| 57 |
+
print(f" HF_TOKEN: {'SET' if os.getenv('HF_TOKEN') else 'NOT SET'}")
|
| 58 |
+
print(f" DEVICE: {os.getenv('DEVICE', 'cuda')}")
|
| 59 |
+
|
| 60 |
+
# Test 4: Load dataset
|
| 61 |
+
print("\n[4] Loading Dataset")
|
| 62 |
+
try:
|
| 63 |
+
from datasets import load_dataset
|
| 64 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 65 |
+
print(f" Loading evgueni-p/fbmc-features-24month...")
|
| 66 |
+
dataset = load_dataset(
|
| 67 |
+
"evgueni-p/fbmc-features-24month",
|
| 68 |
+
split="train",
|
| 69 |
+
token=hf_token
|
| 70 |
+
)
|
| 71 |
+
print(f" Dataset rows: {len(dataset)}")
|
| 72 |
+
|
| 73 |
+
# Convert to Polars
|
| 74 |
+
import polars as pl
|
| 75 |
+
df = pl.from_arrow(dataset.data.table)
|
| 76 |
+
print(f" Polars shape: {df.shape}")
|
| 77 |
+
|
| 78 |
+
# Check for target columns
|
| 79 |
+
target_cols = [col for col in df.columns if col.startswith('target_border_')]
|
| 80 |
+
print(f" Target borders: {len(target_cols)}")
|
| 81 |
+
if target_cols:
|
| 82 |
+
print(f" First border: {target_cols[0]}")
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f" Dataset ERROR: {e}")
|
| 86 |
+
import traceback
|
| 87 |
+
traceback.print_exc()
|
| 88 |
+
|
| 89 |
+
# Test 5: Load Chronos model
|
| 90 |
+
print("\n[5] Loading Chronos Model")
|
| 91 |
+
try:
|
| 92 |
+
from chronos import ChronosPipeline
|
| 93 |
+
import torch
|
| 94 |
+
|
| 95 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 96 |
+
print(f" Device: {device}")
|
| 97 |
+
print(f" Loading amazon/chronos-t5-large...")
|
| 98 |
+
|
| 99 |
+
pipeline = ChronosPipeline.from_pretrained(
|
| 100 |
+
"amazon/chronos-t5-large",
|
| 101 |
+
device_map=device,
|
| 102 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
| 103 |
+
)
|
| 104 |
+
print(f" Model loaded successfully!")
|
| 105 |
+
|
| 106 |
+
# Test inference with dummy data
|
| 107 |
+
print(f"\n Testing inference with dummy data...")
|
| 108 |
+
import numpy as np
|
| 109 |
+
dummy_context = np.random.randn(512).astype(np.float32)
|
| 110 |
+
|
| 111 |
+
forecast = pipeline.predict(
|
| 112 |
+
context=dummy_context,
|
| 113 |
+
prediction_length=24,
|
| 114 |
+
num_samples=5
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
forecast_np = forecast.numpy()
|
| 118 |
+
print(f" Forecast shape: {forecast_np.shape}")
|
| 119 |
+
|
| 120 |
+
# Test quantile calculation
|
| 121 |
+
median = np.median(forecast_np, axis=0)
|
| 122 |
+
q10 = np.quantile(forecast_np, 0.1, axis=0)
|
| 123 |
+
q90 = np.quantile(forecast_np, 0.9, axis=0)
|
| 124 |
+
|
| 125 |
+
print(f" Quantiles calculated successfully!")
|
| 126 |
+
print(f" Median shape: {median.shape}")
|
| 127 |
+
print(f" Q10 shape: {q10.shape}")
|
| 128 |
+
print(f" Q90 shape: {q90.shape}")
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
print(f" Model ERROR: {e}")
|
| 132 |
+
import traceback
|
| 133 |
+
traceback.print_exc()
|
| 134 |
+
|
| 135 |
+
# Test 6: Test dynamic_forecast import
|
| 136 |
+
print("\n[6] Testing Module Imports")
|
| 137 |
+
try:
|
| 138 |
+
from src.forecasting.dynamic_forecast import DynamicForecast
|
| 139 |
+
print(f" DynamicForecast: OK")
|
| 140 |
+
except Exception as e:
|
| 141 |
+
print(f" DynamicForecast ERROR: {e}")
|
| 142 |
+
import traceback
|
| 143 |
+
traceback.print_exc()
|
| 144 |
+
|
| 145 |
+
try:
|
| 146 |
+
from src.forecasting.feature_availability import FeatureAvailability
|
| 147 |
+
print(f" FeatureAvailability: OK")
|
| 148 |
+
except Exception as e:
|
| 149 |
+
print(f" FeatureAvailability ERROR: {e}")
|
| 150 |
+
|
| 151 |
+
# Test 7: Quick inference test
|
| 152 |
+
print("\n[7] Full Pipeline Test (Minimal)")
|
| 153 |
+
try:
|
| 154 |
+
print(f" Testing run_inference function...")
|
| 155 |
+
from src.forecasting.chronos_inference import run_inference
|
| 156 |
+
|
| 157 |
+
# This will be slow but should work
|
| 158 |
+
print(f" Running smoke test for 2025-09-30...")
|
| 159 |
+
print(f" (This may take 60+ seconds...)")
|
| 160 |
+
|
| 161 |
+
result_path = run_inference(
|
| 162 |
+
run_date="2025-09-30",
|
| 163 |
+
forecast_type="smoke_test",
|
| 164 |
+
output_dir="/tmp"
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
print(f" Result file: {result_path}")
|
| 168 |
+
|
| 169 |
+
# Check if file has data
|
| 170 |
+
import polars as pl
|
| 171 |
+
df = pl.read_parquet(result_path)
|
| 172 |
+
print(f" Result shape: {df.shape}")
|
| 173 |
+
print(f" Columns: {df.columns}")
|
| 174 |
+
|
| 175 |
+
if len(df.columns) > 1:
|
| 176 |
+
print(f" [SUCCESS] Forecast has data!")
|
| 177 |
+
else:
|
| 178 |
+
print(f" [ERROR] Forecast is empty (only timestamps)")
|
| 179 |
+
|
| 180 |
+
except Exception as e:
|
| 181 |
+
print(f" Pipeline ERROR: {e}")
|
| 182 |
+
import traceback
|
| 183 |
+
traceback.print_exc()
|
| 184 |
+
|
| 185 |
+
print("\n" + "="*60)
|
| 186 |
+
print("DIAGNOSTIC COMPLETE")
|
| 187 |
+
print("="*60)
|