""" Phase 1 ENTSO-E API Testing Script =================================== Tests critical implementation details: 1. Pumped storage query method (Scenario A/B/C) 2. Transmission outages (planned A53 vs unplanned A54) 3. Forward-looking outage queries (TODAY -> +14 days) 4. CNEC EIC filtering match rate Run this before implementing full collection script. """ import os import sys from pathlib import Path from datetime import datetime, timedelta import pandas as pd import polars as pl from dotenv import load_dotenv from entsoe import EntsoePandasClient # Add src to path for imports sys.path.append(str(Path(__file__).parent.parent)) # Load environment variables load_dotenv() API_KEY = os.getenv('ENTSOE_API_KEY') if not API_KEY: raise ValueError("ENTSOE_API_KEY not found in .env file") # Initialize client client = EntsoePandasClient(api_key=API_KEY) print("="*80) print("PHASE 1 ENTSO-E API TESTING") print("="*80) print() # ============================================================================ # TEST 1: Pumped Storage Query Method # ============================================================================ print("-"*80) print("TEST 1: PUMPED STORAGE QUERY METHOD") print("-"*80) print() print("Testing query_generation() with PSR type B10 (Hydro Pumped Storage)") print("Zone: Switzerland (CH) - largest pumped storage in Europe") print("Period: 2025-09-23 to 2025-09-30 (1 week)") print() try: test_pumped = client.query_generation( country_code='CH', start=pd.Timestamp('2025-09-23', tz='UTC'), end=pd.Timestamp('2025-09-30', tz='UTC'), psr_type='B10' # Hydro Pumped Storage ) print(f"[OK] Query successful!") print(f" Data type: {type(test_pumped)}") print(f" Shape: {test_pumped.shape}") print(f" Columns: {test_pumped.columns.tolist() if hasattr(test_pumped, 'columns') else 'N/A (Series)'}") print() # Analyze values if isinstance(test_pumped, pd.Series): print(" Data is a Series (single column)") print(f" Min value: {test_pumped.min():.2f} MW") print(f" Max value: {test_pumped.max():.2f} MW") print(f" Mean value: {test_pumped.mean():.2f} MW") print() # Check for negative values (would indicate net balance) negative_count = (test_pumped < 0).sum() print(f" Negative values: {negative_count} / {len(test_pumped)} ({negative_count/len(test_pumped)*100:.1f}%)") if negative_count > 0: print("\n >> SCENARIO A: Returns NET BALANCE (generation - pumping)") print(" >> Need to derive gross generation and consumption separately") print(" >> OR query twice with different parameters") else: print("\n >> SCENARIO B: Returns GENERATION ONLY (always positive)") print(" >> Need to find separate method for pumping consumption") elif isinstance(test_pumped, pd.DataFrame): print(" Data is a DataFrame (multiple columns)") print(f" Columns: {test_pumped.columns.tolist()}") print() for col in test_pumped.columns: print(f" Column '{col}':") print(f" Min: {test_pumped[col].min():.2f} MW") print(f" Max: {test_pumped[col].max():.2f} MW") print(f" Negative values: {(test_pumped[col] < 0).sum()}") print("\n >> SCENARIO C: Returns MULTIPLE COLUMNS") print(" >> Check if separate generation/consumption/net columns exist") # Show sample values (48 hours = 2 days) print("\n Sample values (first 48 hours):") print(test_pumped.head(48)) except Exception as e: print(f"[FAIL] Query failed: {e}") print(" >> Cannot determine pumped storage query method") print() # ============================================================================ # TEST 2: Transmission Outages - Planned vs Unplanned # ============================================================================ print("-"*80) print("TEST 2: TRANSMISSION OUTAGES - PLANNED (A53) vs UNPLANNED (A54)") print("-"*80) print() print("Testing query_unavailability_transmission()") print("Border: Germany/Luxembourg (DE_LU) -> France (FR)") print("Period: 2025-09-23 to 2025-09-30 (1 week)") print() try: test_outages = client.query_unavailability_transmission( country_code_from='10Y1001A1001A82H', # DE_LU country_code_to='10YFR-RTE------C', # FR start=pd.Timestamp('2025-09-23', tz='UTC'), end=pd.Timestamp('2025-09-30', tz='UTC') ) print(f"[OK] Query successful!") print(f" Records returned: {len(test_outages)}") print(f" Columns: {test_outages.columns.tolist()}") print() # Check for businessType column if 'businessType' in test_outages.columns: print(" [OK] businessType column found!") print("\n Business types distribution:") business_counts = test_outages['businessType'].value_counts() print(business_counts) print() # Check for A53 (Planned) and A54 (Unplanned) has_a53 = 'A53' in business_counts.index has_a54 = 'A54' in business_counts.index if has_a53 and has_a54: print(" [OK] BOTH A53 (Planned) and A54 (Unplanned) present!") print(" >> Can use standard client for all outages") elif has_a53: print(" [OK] A53 (Planned) found, but no A54 (Unplanned)") print(" >> Standard client returns only planned outages") elif has_a54: print(" [FAIL] Only A54 (Unplanned) found - NO PLANNED OUTAGES (A53)") print(" >> CRITICAL: Need EntsoeRawClient workaround for planned outages!") else: print(" [WARN] Unknown business types") print(" >> Manual investigation required") else: print(" [FAIL] businessType column NOT found!") print(" >> Cannot determine if planned outages are included") print(" >> May need EntsoeRawClient to access businessType parameter") # Show sample outages print("\n Sample outage records:") display_cols = ['start', 'end', 'unavailability_reason'] if 'unavailability_reason' in test_outages.columns else ['start', 'end'] if 'businessType' in test_outages.columns: display_cols.append('businessType') print(test_outages[display_cols].head(10)) except Exception as e: print(f"[FAIL] Query failed: {e}") print(" >> Cannot test transmission outages") print() # ============================================================================ # TEST 3: Forward-Looking Outage Queries # ============================================================================ print("-"*80) print("TEST 3: FORWARD-LOOKING OUTAGE QUERIES (TODAY -> +14 DAYS)") print("-"*80) print() today = datetime.now() future_end = today + timedelta(days=14) print(f"Testing forward-looking transmission outages") print(f"Border: Germany/Luxembourg (DE_LU) -> France (FR)") print(f"Period: {today.strftime('%Y-%m-%d')} to {future_end.strftime('%Y-%m-%d')}") print() try: future_outages = client.query_unavailability_transmission( country_code_from='10Y1001A1001A82H', # DE_LU country_code_to='10YFR-RTE------C', # FR start=pd.Timestamp(today, tz='UTC'), end=pd.Timestamp(future_end, tz='UTC') ) print(f"[OK] Forward-looking query successful!") print(f" Future outages found: {len(future_outages)}") if len(future_outages) > 0: print(f" Date range: {future_outages['start'].min()} to {future_outages['end'].max()}") print("\n Sample future outages:") display_cols = ['start', 'end'] if 'businessType' in future_outages.columns: display_cols.append('businessType') if 'unavailability_reason' in future_outages.columns: display_cols.append('unavailability_reason') print(future_outages[display_cols].head()) else: print(" >> No future outages found (may be normal if no planned maintenance)") except Exception as e: print(f"[FAIL] Forward-looking query failed: {e}") print(" >> Cannot query future outages") print() # ============================================================================ # TEST 4: CNEC EIC Filtering # ============================================================================ print("-"*80) print("TEST 4: CNEC EIC FILTERING MATCH RATE") print("-"*80) print() print("Loading 208 critical CNEC EIC codes...") try: # Load CNEC EIC codes cnec_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_all.csv' if not cnec_file.exists(): print(f" [WARN] File not found: {cnec_file}") print(" >> Trying separate tier files...") tier1_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_tier1.csv' tier2_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_tier2.csv' if tier1_file.exists() and tier2_file.exists(): tier1 = pl.read_csv(tier1_file) tier2 = pl.read_csv(tier2_file) cnec_df = pl.concat([tier1, tier2]) print(f" [OK] Loaded from separate tier files") else: raise FileNotFoundError("CNEC files not found") else: cnec_df = pl.read_csv(cnec_file) print(f" [OK] Loaded from combined file") cnec_eics = cnec_df.select('cnec_eic').to_series().to_list() print(f" CNEC EICs loaded: {len(cnec_eics)}") print() # Filter test outages from Test 2 if 'test_outages' in locals() and len(test_outages) > 0: print(f" Filtering {len(test_outages)} outages to CNEC EICs...") # Check which column contains EIC codes eic_column = None for col in test_outages.columns: if 'eic' in col.lower() or 'mrid' in col.lower(): eic_column = col break if eic_column: print(f" Using column: {eic_column}") filtered = test_outages[test_outages[eic_column].isin(cnec_eics)] match_rate = len(filtered) / len(test_outages) * 100 if len(test_outages) > 0 else 0 print(f"\n Results:") print(f" Total outages: {len(test_outages)}") print(f" Matching CNECs: {len(filtered)}") print(f" Match rate: {match_rate:.1f}%") if match_rate > 0: print(f"\n [OK] CNEC filtering works!") print(f" >> Expected match rate: 5-15% (most outages are non-critical lines)") else: print(f"\n [FAIL] No matches found") print(f" >> May need to verify CNEC EIC codes or outage data structure") else: print(" [FAIL] Could not identify EIC column in outage data") print(f" >> Available columns: {test_outages.columns.tolist()}") else: print(" >> No outage data from Test 2 to filter") print(" >> Run Test 2 successfully first") except Exception as e: print(f"[FAIL] CNEC filtering test failed: {e}") print() # ============================================================================ # SUMMARY & RECOMMENDATIONS # ============================================================================ print("="*80) print("PHASE 1 TESTING SUMMARY") print("="*80) print() print("Review the test results above to determine:") print() print("1. PUMPED STORAGE:") print(" - Scenario A: Implement separate gross generation/consumption extraction") print(" - Scenario B: Find alternative method for pumping consumption") print(" - Scenario C: Extract all columns directly") print() print("2. TRANSMISSION OUTAGES:") print(" - If A53 present: Use standard client [OK]") print(" - If only A54: Implement EntsoeRawClient for planned outages [FAIL]") print() print("3. FORWARD-LOOKING:") print(" - If successful: Can query future outages [OK]") print(" - If failed: Need alternative approach [FAIL]") print() print("4. CNEC FILTERING:") print(" - If match rate 5-15%: Expected behavior [OK]") print(" - If 0%: Verify CNEC EIC codes or data structure [FAIL]") print() print("="*80) print("Next: Implement collection script based on test results") print("="*80)