--- title: FBMC Chronos-2 Zero-Shot Forecasting emoji: ⚡ colorFrom: blue colorTo: green sdk: jupyterlab sdk_version: "4.0.0" app_file: inference_smoke_test.ipynb pinned: false license: mit hardware: a10g-small --- # FBMC Flow-Based Market Coupling Forecasting Zero-shot electricity cross-border flow forecasting for 38 European FBMC borders using Amazon Chronos 2. ## 🚀 Quick Start This HuggingFace Space provides interactive Jupyter notebooks for running zero-shot forecasts on GPU. ### Available Notebooks 1. **`inference_smoke_test.ipynb`** - Quick validation (1 border × 7 days, ~1 min) 2. **`inference_full_14day.ipynb`** - Production forecast (38 borders × 14 days, ~5 min) 3. **`evaluation.ipynb`** - Performance analysis vs actuals ### How to Use 1. Open any notebook in JupyterLab 2. Run all cells (Cell → Run All) 3. View results and visualizations inline ## 📊 Dataset **Source**: [evgueni-p/fbmc-features-24month](https://huggingface.co/datasets/evgueni-p/fbmc-features-24month) - **Rows**: 17,880 hourly observations - **Date Range**: Oct 1, 2023 - Oct 14, 2025 - **Features**: 2,553 engineered features - Weather: 375 features (52 grid points) - ENTSO-E: ~1,863 features (generation, demand, prices, outages) - JAO: 276 features (CNEC binding, RAM, utilization, LTA, net positions) - Temporal: 39 features (hour, day, month, etc.) - **Targets**: 38 FBMC cross-border flows (MW) ## 🔬 Model **Amazon Chronos 2 Large** (710M parameters) - Pre-trained foundation model for time series - Zero-shot inference (no fine-tuning) - Multivariate forecasting with future covariates - Dynamic time-aware data extraction (prevents leakage) ## ⚡ Hardware **GPU**: NVIDIA A10G (24GB VRAM) - Model inference: ~5 minutes for complete 14-day forecast - Recommended for production workloads ## 📈 Performance Target **D+1 MAE Goal**: <150 MW per border This is a zero-shot baseline. Fine-tuning (Phase 2) expected to improve accuracy by 20-40%. ## 🔐 Requirements Set `HF_TOKEN` in Space secrets to access the private dataset. ## 🛠️ Technical Details ### Feature Availability Windows The system implements time-aware forecasting to prevent data leakage: - **Full-horizon D+14** (603 features): Weather, CNEC outages, LTA - **Partial D+1** (12 features): Load forecasts (masked D+2-D+14) - **Historical only** (1,899 features): Prices, generation, demand ### Dynamic Forecast System Uses `DynamicForecast` module to extract context and future covariates based on run date: - Context window: 512 hours (historical data) - Forecast horizon: 336 hours (14 days) - Automatic masking for partial availability ## 📚 Documentation - [Project Repository](https://github.com/evgspacdmy/fbmc_chronos2) - [Activity Log](https://github.com/evgspacdmy/fbmc_chronos2/blob/main/doc/activity.md) - [Feature Engineering Details](https://github.com/evgspacdmy/fbmc_chronos2/tree/main/src/feature_engineering) ## 🔄 Phase 2 Roadmap Future improvements (not included in zero-shot MVP): - Fine-tuning on FBMC data - Ensemble methods - Probabilistic forecasting - Real-time data pipeline - Production API ## 👤 Author **Evgueni Poloukarov** ## 📄 License MIT License - See LICENSE file for details --- **Last Updated**: 2025-11-14 **Version**: 1.0.0 (Zero-Shot MVP)