Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import joblib | |
| from huggingface_hub import hf_hub_download | |
| import numpy as np | |
| # Define the repository ID and the model filename | |
| # Make sure this matches your deployed model on Hugging Face | |
| repo_id = "farooqhasanDA/logistic-regression-sklearn-model" | |
| model_filename = "models/logistic_regression_model.joblib" | |
| # Global variable to store the loaded model | |
| loaded_model = None | |
| def predict_proba_wrapper(feature1_num, feature2_text, feature3_dropdown, feature4_checkbox): | |
| global loaded_model | |
| # Download and load the model if not already loaded | |
| if loaded_model is None: | |
| print("Downloading and loading model for the first time...") | |
| try: | |
| model_path_local = hf_hub_download(repo_id=repo_id, filename=model_filename) | |
| loaded_model = joblib.load(model_path_local) | |
| print("Model loaded successfully.") | |
| except Exception as e: | |
| return f"Error loading model: {e}" | |
| try: | |
| # Convert text to a numerical value (e.g., length, or some simple encoding) | |
| f2_val = len(feature2_text) if feature2_text else 0 | |
| # Convert dropdown choice to a numerical value | |
| f3_val = {'Option A': 0, 'Option B': 1, 'Option C': 2}.get(feature3_dropdown, 0) | |
| # Convert checkbox (boolean) to 0 or 1 | |
| f4_val = 1 if feature4_checkbox else 0 | |
| input_array = np.array([[float(feature1_num), float(f2_val), float(f3_val), float(f4_val)]]) | |
| # Make a prediction and get prediction probabilities | |
| prediction = loaded_model.predict(input_array) | |
| probabilities = loaded_model.predict_proba(input_array) | |
| # Return formatted string | |
| return (f"Prediction: Class {prediction[0]}, " | |
| f"Probabilities: Class 0 = {probabilities[0][0]:.4f}, Class 1 = {probabilities[0][1]:.4f}") | |
| except ValueError: | |
| return "Error: Please ensure Feature 1 is a valid number." | |
| except Exception as e: | |
| return f"Prediction error: {e}" | |
| # Create gradio input components with different types | |
| inputs = [ | |
| gr.Number(label="Numerical Feature 1 (e.g., 0.5)", value=0.5), | |
| gr.Textbox(label="Text Feature 2 (e.g., 'Hello world')", value="Sample text"), | |
| gr.Dropdown(choices=["Option A", "Option B", "Option C"], label="Categorical Feature 3"), | |
| gr.Checkbox(label="Boolean Feature 4 (checked/unchecked)", value=True) | |
| ] | |
| # Create a gradio output component | |
| output = gr.Textbox(label="Prediction Result") | |
| # Instantiate gr.Interface | |
| iface = gr.Interface(fn=predict_proba_wrapper, inputs=inputs, outputs=output, | |
| title="Logistic Regression Model Predictor (Hosted on HF Space)", | |
| description="Enter different types of features to get a binary classification prediction and probabilities. | |
| (Note: Text/Dropdown/Checkbox inputs are converted to numbers for this demo model.)") | |
| # Launch the Gradio interface | |
| iface.launch(debug=True) | |