Spaces:
Running
Running
File size: 10,083 Bytes
557c6b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import json
import csv
import pandas as pd
import random
def validate_dataset(file_path, options):
"""
Validates that a dataset file can be processed with the given options.
Args:
file_path: Path to the dataset file
options: Dictionary of processing options
Returns:
Tuple of (is_valid, message)
"""
if not os.path.exists(file_path):
return False, f"File not found: {file_path}"
file_format = options.get("format", "").lower()
try:
if file_format == "csv":
# Validate CSV format
separator = options.get("csv_separator", ",")
prompt_col = options.get("csv_prompt_col", "prompt")
completion_col = options.get("csv_completion_col", "completion")
df = pd.read_csv(file_path, sep=separator)
if prompt_col not in df.columns:
return False, f"Prompt column '{prompt_col}' not found in CSV file"
if completion_col not in df.columns:
return False, f"Completion column '{completion_col}' not found in CSV file"
# Check for empty values
if df[prompt_col].isnull().any():
return False, "CSV file contains empty prompt values"
if df[completion_col].isnull().any():
return False, "CSV file contains empty completion values"
elif file_format == "jsonl":
# Validate JSONL format
prompt_key = options.get("jsonl_prompt_key", "prompt")
completion_key = options.get("jsonl_completion_key", "completion")
with open(file_path, 'r', encoding='utf-8') as f:
line_count = 0
for line in f:
line = line.strip()
if not line:
continue
data = json.loads(line)
line_count += 1
if prompt_key not in data:
return False, f"Prompt key '{prompt_key}' not found in JSONL at line {line_count}"
if completion_key not in data:
return False, f"Completion key '{completion_key}' not found in JSONL at line {line_count}"
if not data[prompt_key] or not isinstance(data[prompt_key], str):
return False, f"Invalid prompt value at line {line_count}"
if not data[completion_key] or not isinstance(data[completion_key], str):
return False, f"Invalid completion value at line {line_count}"
if line_count == 0:
return False, "JSONL file is empty"
elif file_format == "plain text":
# Validate plain text format
separator = options.get("text_separator", "###")
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
parts = content.split(separator)
if len(parts) < 3: # Need at least one prompt and one completion
return False, f"Text file doesn't contain enough sections separated by '{separator}'"
# Check if there's an odd number of parts (should be prompt, completion, prompt, completion, ...)
if len(parts) % 2 == 0:
return False, f"Text file has an invalid number of sections separated by '{separator}'"
else:
return False, f"Unsupported format: {file_format}"
return True, "Dataset is valid"
except Exception as e:
return False, f"Error validating dataset: {str(e)}"
def process_dataset(file_path, options):
"""
Processes a dataset file according to the given options.
Args:
file_path: Path to the dataset file
options: Dictionary of processing options
Returns:
Tuple of (processed_data, stats, preview)
"""
file_format = options.get("format", "").lower()
if file_format == "csv":
return _process_csv(file_path, options)
elif file_format == "jsonl":
return _process_jsonl(file_path, options)
elif file_format == "plain text":
return _process_text(file_path, options)
else:
raise ValueError(f"Unsupported format: {file_format}")
def _process_csv(file_path, options):
"""Process a CSV dataset file."""
separator = options.get("csv_separator", ",")
prompt_col = options.get("csv_prompt_col", "prompt")
completion_col = options.get("csv_completion_col", "completion")
df = pd.read_csv(file_path, sep=separator)
# Extract prompts and completions
data = []
for _, row in df.iterrows():
data.append({
"prompt": str(row[prompt_col]),
"completion": str(row[completion_col])
})
# Generate statistics
stats = {
"num_examples": len(data),
"avg_prompt_length": sum(len(item["prompt"]) for item in data) / len(data),
"avg_completion_length": sum(len(item["completion"]) for item in data) / len(data),
"format": "csv"
}
# Create a preview DataFrame (showing first 5 rows)
preview = df[[prompt_col, completion_col]].head(5)
return data, stats, preview
def _process_jsonl(file_path, options):
"""Process a JSONL dataset file."""
prompt_key = options.get("jsonl_prompt_key", "prompt")
completion_key = options.get("jsonl_completion_key", "completion")
data = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line:
continue
item = json.loads(line)
data.append({
"prompt": item[prompt_key],
"completion": item[completion_key]
})
# Generate statistics
stats = {
"num_examples": len(data),
"avg_prompt_length": sum(len(item["prompt"]) for item in data) / len(data),
"avg_completion_length": sum(len(item["completion"]) for item in data) / len(data),
"format": "jsonl"
}
# Create a preview DataFrame
preview_data = []
for i, item in enumerate(data[:5]):
preview_data.append({
"prompt": item["prompt"],
"completion": item["completion"]
})
preview = pd.DataFrame(preview_data)
return data, stats, preview
def _process_text(file_path, options):
"""Process a plain text dataset file."""
separator = options.get("text_separator", "###")
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
parts = content.split(separator)
data = []
for i in range(0, len(parts) - 1, 2):
prompt = parts[i].strip()
completion = parts[i + 1].strip()
if prompt and completion:
data.append({
"prompt": prompt,
"completion": completion
})
# Generate statistics
stats = {
"num_examples": len(data),
"avg_prompt_length": sum(len(item["prompt"]) for item in data) / len(data),
"avg_completion_length": sum(len(item["completion"]) for item in data) / len(data),
"format": "text"
}
# Create a preview DataFrame
preview_data = []
for i, item in enumerate(data[:5]):
preview_data.append({
"prompt": item["prompt"],
"completion": item["completion"]
})
preview = pd.DataFrame(preview_data)
return data, stats, preview
def format_for_training(dataset, tokenizer, max_length=512):
"""
Formats a processed dataset for training with Gemma.
Args:
dataset: List of prompt/completion pairs
tokenizer: Tokenizer for the model
max_length: Maximum sequence length
Returns:
Dictionary of training data
"""
input_ids = []
labels = []
attention_mask = []
for item in dataset:
prompt = item["prompt"]
completion = item["completion"]
# Format as the model expects
full_text = f"{prompt}{tokenizer.eos_token}{completion}{tokenizer.eos_token}"
# Tokenize
encoded = tokenizer(full_text, max_length=max_length, padding="max_length", truncation=True)
# For input_ids, we use the full sequence
input_ids.append(encoded["input_ids"])
attention_mask.append(encoded["attention_mask"])
# For labels, we set the prompt tokens to -100 so they're ignored in loss calculation
prompt_encoded = tokenizer(f"{prompt}{tokenizer.eos_token}", add_special_tokens=False)
prompt_length = len(prompt_encoded["input_ids"])
# Create label tensor: -100 for prompt tokens (ignored in loss), actual token IDs for completion
label = [-100] * prompt_length + encoded["input_ids"][prompt_length:]
# Pad to max_length
if len(label) < max_length:
label = label + [-100] * (max_length - len(label))
else:
label = label[:max_length]
labels.append(label)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
def create_train_val_split(dataset, val_size=0.1, seed=42):
"""
Splits a dataset into training and validation sets.
Args:
dataset: List of examples
val_size: Fraction of examples to use for validation
seed: Random seed for reproducibility
Returns:
Tuple of (train_dataset, val_dataset)
"""
random.seed(seed)
random.shuffle(dataset)
val_count = max(1, int(len(dataset) * val_size))
val_dataset = dataset[:val_count]
train_dataset = dataset[val_count:]
return train_dataset, val_dataset
|