Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer | |
| from prophet import Prophet | |
| # Caminho para o arquivo CSS, ajuste conforme a estrutura do seu projeto | |
| css_file = "style.css" | |
| # Abrindo e lendo o arquivo CSS | |
| with open(css_file, "r") as css: | |
| css_style = css.read() | |
| # Markdown combinado com a importação da fonte e o HTML | |
| html_content = f""" | |
| <style> | |
| {css_style} | |
| @import url('https://fonts.googleapis.com/css2?family=Kanit:wght@700&display=swap'); | |
| </style> | |
| <div style='display: flex; flex-direction: column; align-items: flex-start;'> | |
| <div style='display: flex; align-items: center;'> | |
| <div style='width: 20px; height: 40px; background-color: green; margin-right: 1px;'></div> | |
| <div style='width: 20px; height: 40px; background-color: red; margin-right: 1px;'></div> | |
| <div style='width: 20px; height: 40px; background-color: yellow; margin-right: 20px;'></div> | |
| <span style='font-size: 50px; font-weight: normal; font-family: "Kanit", sans-serif;'>NOSTRADAMUS</span> | |
| </div> | |
| <div style='text-align: left; width: 100%;'> | |
| <span style='font-size: 20px; font-weight: normal; color: #333; font-family: "Kanit", sans-serif'> | |
| Meta Prophet + Microsoft TAPEX</span> | |
| </div> | |
| </div> | |
| """ | |
| # Aplicar o markdown combinado no Streamlit | |
| st.markdown(html_content, unsafe_allow_html=True) | |
| # Inicialização de variáveis de estado | |
| if 'all_anomalies' not in st.session_state: | |
| st.session_state['all_anomalies'] = pd.DataFrame() | |
| if 'history' not in st.session_state: | |
| st.session_state['history'] = [] | |
| # Carregar os modelos de tradução e TAPEX | |
| pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
| en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5") | |
| tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
| tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
| tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
| def translate(text, model, tokenizer, source_lang="pt", target_lang="en"): | |
| input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
| outputs = model.generate(input_ids) | |
| translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return translated_text | |
| def response(user_question, table_data): | |
| question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en") | |
| encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True) | |
| outputs = tapex_model.generate(**encoding) | |
| response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
| response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt") | |
| return response_pt | |
| def load_data(uploaded_file): | |
| if uploaded_file.name.endswith('.csv'): | |
| df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8') | |
| elif uploaded_file.name.endswith('.xlsx'): | |
| df = pd.read_excel(uploaded_file) | |
| return df | |
| def preprocess_data(df): | |
| # Implementar as etapas de pré-processamento aqui | |
| return df | |
| def apply_prophet(df): | |
| # Implementar o modelo Prophet aqui | |
| return df | |
| # Interface para carregar arquivo | |
| uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx']) | |
| if uploaded_file and 'all_anomalies' not in st.session_state: | |
| df = load_data(uploaded_file) | |
| df = preprocess_data(df) | |
| all_anomalies = apply_prophet(df) | |
| st.session_state['all_anomalies'] = all_anomalies | |
| # Interface para perguntas do usuário | |
| user_question = st.text_input("Escreva sua questão aqui:", "") | |
| if user_question: | |
| bot_response = response(user_question, st.session_state['all_anomalies']) | |
| st.session_state['history'].append(('👤', user_question)) | |
| st.session_state['history'].append(('🤖', bot_response)) | |
| # Mostrar histórico de conversa | |
| for sender, message in st.session_state['history']: | |
| if sender == '👤': | |
| st.markdown(f"**👤 {message}**") | |
| elif sender == '🤖': | |
| st.markdown(f"**🤖 {message}**", unsafe_allow_html=True) | |
| # Botão para limpar histórico | |
| if st.button("Limpar histórico"): | |
| st.session_state['history'] = [] |