Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,8 +2,6 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer
|
| 4 |
from prophet import Prophet
|
| 5 |
-
import datetime
|
| 6 |
-
import sentencepiece as spm
|
| 7 |
|
| 8 |
# Caminho para o arquivo CSS, ajuste conforme a estrutura do seu projeto
|
| 9 |
css_file = "style.css"
|
|
@@ -35,106 +33,12 @@ html_content = f"""
|
|
| 35 |
# Aplicar o markdown combinado no Streamlit
|
| 36 |
st.markdown(html_content, unsafe_allow_html=True)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
# File upload interface
|
| 40 |
-
uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx'])
|
| 41 |
-
|
| 42 |
-
if uploaded_file:
|
| 43 |
-
if 'all_anomalies' not in st.session_state:
|
| 44 |
-
with st.spinner('Aplicando modelo de s茅rie temporal...'):
|
| 45 |
-
# Load the file into a DataFrame
|
| 46 |
-
if uploaded_file.name.endswith('.csv'):
|
| 47 |
-
df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8')
|
| 48 |
-
elif uploaded_file.name.endswith('.xlsx'):
|
| 49 |
-
df = pd.read_excel(uploaded_file)
|
| 50 |
-
|
| 51 |
-
# Data preprocessing for Prophet
|
| 52 |
-
new_df = df.iloc[2:, 9:-1].fillna(0)
|
| 53 |
-
new_df.columns = df.iloc[1, 9:-1]
|
| 54 |
-
new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True)
|
| 55 |
-
|
| 56 |
-
month_dict = {
|
| 57 |
-
'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04',
|
| 58 |
-
'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08',
|
| 59 |
-
'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12'
|
| 60 |
-
}
|
| 61 |
-
|
| 62 |
-
def convert_column_name(column_name):
|
| 63 |
-
if column_name == 'R贸tulos de Linha':
|
| 64 |
-
return column_name
|
| 65 |
-
parts = column_name.split('/')
|
| 66 |
-
month = parts[0].strip()
|
| 67 |
-
year = parts[1].strip()
|
| 68 |
-
year = ''.join(filter(str.isdigit, year))
|
| 69 |
-
month_number = month_dict.get(month, '00')
|
| 70 |
-
return f"{month_number}/{year}"
|
| 71 |
-
|
| 72 |
-
new_df.columns = [convert_column_name(col) for col in new_df.columns]
|
| 73 |
-
new_df.columns = pd.to_datetime(new_df.columns, errors='coerce')
|
| 74 |
-
new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True)
|
| 75 |
-
df_clean = new_df.copy()
|
| 76 |
-
|
| 77 |
-
# Create an empty DataFrame to store all anomalies
|
| 78 |
-
all_anomalies = pd.DataFrame()
|
| 79 |
-
|
| 80 |
-
# Process each row in the DataFrame
|
| 81 |
-
for index, row in df_clean.iterrows():
|
| 82 |
-
data = pd.DataFrame({
|
| 83 |
-
'ds': [col for col in df_clean.columns if isinstance(col, pd.Timestamp)],
|
| 84 |
-
'y': row[[isinstance(col, pd.Timestamp) for col in df_clean.columns]].values
|
| 85 |
-
})
|
| 86 |
-
|
| 87 |
-
data = data[data['y'] > 0].reset_index(drop=True)
|
| 88 |
-
if data.empty or len(data) < 2:
|
| 89 |
-
print(f"Skipping group {row['Rotulo']} because there are less than 2 non-zero observations.")
|
| 90 |
-
continue
|
| 91 |
-
|
| 92 |
-
try:
|
| 93 |
-
model = Prophet(interval_width=0.95)
|
| 94 |
-
model.fit(data)
|
| 95 |
-
except ValueError as e:
|
| 96 |
-
print(f"Skipping group {row['Rotulo']} due to error: {e}")
|
| 97 |
-
continue
|
| 98 |
-
|
| 99 |
-
future = model.make_future_dataframe(periods=12, freq='M')
|
| 100 |
-
forecast = model.predict(future)
|
| 101 |
-
|
| 102 |
-
num_real = len(data)
|
| 103 |
-
num_forecast = len(forecast)
|
| 104 |
-
real_values = list(data['y']) + [None] * (num_forecast - num_real)
|
| 105 |
-
forecast['real'] = real_values
|
| 106 |
-
anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])]
|
| 107 |
-
|
| 108 |
-
anomalies['Group'] = row['Rotulo']
|
| 109 |
-
all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'Group']]], ignore_index=True)
|
| 110 |
-
|
| 111 |
-
# Store the result in session state
|
| 112 |
-
all_anomalies.rename(columns={"ds": "datetime", "real": "monetary value", "Group": "group"}, inplace=True)
|
| 113 |
-
all_anomalies = all_anomalies[all_anomalies['monetary value'].astype(float) >= 10000000.00]
|
| 114 |
-
all_anomalies['monetary value'] = all_anomalies['monetary value'].apply(lambda x: f"{x:.2f}")
|
| 115 |
-
all_anomalies.sort_values(by=['monetary value'], ascending=False, inplace=True)
|
| 116 |
-
all_anomalies = all_anomalies.fillna('').astype(str)
|
| 117 |
-
|
| 118 |
-
# Store in session state
|
| 119 |
-
st.session_state['all_anomalies'] = all_anomalies
|
| 120 |
-
|
| 121 |
-
# Display the dataframe if it exists in session state
|
| 122 |
-
if 'all_anomalies' in st.session_state:
|
| 123 |
-
st.dataframe(st.session_state['all_anomalies'].head())
|
| 124 |
-
else:
|
| 125 |
-
st.warning("Ainda n茫o h谩 dados de anomalias para exibir. Por favor, carregue um arquivo.")
|
| 126 |
-
|
| 127 |
-
else:
|
| 128 |
-
st.warning("Por favor, carregue um arquivo CSV ou XLSX para come莽ar.")
|
| 129 |
-
|
| 130 |
-
# Load translation models
|
| 131 |
pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5")
|
| 132 |
en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5")
|
| 133 |
-
tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5")
|
| 134 |
-
|
| 135 |
-
# Load TAPEX model
|
| 136 |
tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
| 137 |
tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
|
|
|
| 138 |
|
| 139 |
def translate(text, model, tokenizer, source_lang="pt", target_lang="en"):
|
| 140 |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
|
|
@@ -150,32 +54,43 @@ def response(user_question, table_data):
|
|
| 150 |
response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt")
|
| 151 |
return response_pt
|
| 152 |
|
| 153 |
-
|
| 154 |
-
if '
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
if user_question:
|
| 166 |
-
st.session_state['history'].append(('馃懁', user_question))
|
| 167 |
-
st.markdown(f"**馃懁 {user_question}**")
|
| 168 |
-
|
| 169 |
bot_response = response(user_question, st.session_state['all_anomalies'])
|
| 170 |
-
|
| 171 |
st.session_state['history'].append(('馃', bot_response))
|
| 172 |
-
st.markdown(f"<div style='text-align: right'>**馃 {bot_response}**</div>", unsafe_allow_html=True)
|
| 173 |
-
|
| 174 |
-
if st.button("Limpar"):
|
| 175 |
-
st.session_state['history'] = []
|
| 176 |
|
|
|
|
| 177 |
for sender, message in st.session_state['history']:
|
| 178 |
if sender == '馃懁':
|
| 179 |
st.markdown(f"**馃懁 {message}**")
|
| 180 |
elif sender == '馃':
|
| 181 |
-
st.markdown(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer
|
| 4 |
from prophet import Prophet
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Caminho para o arquivo CSS, ajuste conforme a estrutura do seu projeto
|
| 7 |
css_file = "style.css"
|
|
|
|
| 33 |
# Aplicar o markdown combinado no Streamlit
|
| 34 |
st.markdown(html_content, unsafe_allow_html=True)
|
| 35 |
|
| 36 |
+
# Carregar os modelos de tradu莽茫o e TAPEX
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5")
|
| 38 |
en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5")
|
|
|
|
|
|
|
|
|
|
| 39 |
tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
| 40 |
tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
| 41 |
+
tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5")
|
| 42 |
|
| 43 |
def translate(text, model, tokenizer, source_lang="pt", target_lang="en"):
|
| 44 |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
|
|
|
|
| 54 |
response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt")
|
| 55 |
return response_pt
|
| 56 |
|
| 57 |
+
def load_data(uploaded_file):
|
| 58 |
+
if uploaded_file.name.endswith('.csv'):
|
| 59 |
+
df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8')
|
| 60 |
+
elif uploaded_file.name.endswith('.xlsx'):
|
| 61 |
+
df = pd.read_excel(uploaded_file)
|
| 62 |
+
return df
|
| 63 |
|
| 64 |
+
def preprocess_data(df):
|
| 65 |
+
# Implementar as etapas de pr茅-processamento aqui
|
| 66 |
+
return df
|
| 67 |
|
| 68 |
+
def apply_prophet(df):
|
| 69 |
+
# Implementar o modelo Prophet aqui
|
| 70 |
+
return df
|
| 71 |
|
| 72 |
+
# Interface para carregar arquivo
|
| 73 |
+
uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx'])
|
| 74 |
+
if uploaded_file and 'all_anomalies' not in st.session_state:
|
| 75 |
+
df = load_data(uploaded_file)
|
| 76 |
+
df = preprocess_data(df)
|
| 77 |
+
all_anomalies = apply_prophet(df)
|
| 78 |
+
st.session_state['all_anomalies'] = all_anomalies
|
| 79 |
+
|
| 80 |
+
# Interface para perguntas do usu谩rio
|
| 81 |
+
user_question = st.text_input("Escreva sua quest茫o aqui:", "")
|
| 82 |
if user_question:
|
|
|
|
|
|
|
|
|
|
| 83 |
bot_response = response(user_question, st.session_state['all_anomalies'])
|
| 84 |
+
st.session_state['history'].append(('馃懁', user_question))
|
| 85 |
st.session_state['history'].append(('馃', bot_response))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
# Mostrar hist贸rico de conversa
|
| 88 |
for sender, message in st.session_state['history']:
|
| 89 |
if sender == '馃懁':
|
| 90 |
st.markdown(f"**馃懁 {message}**")
|
| 91 |
elif sender == '馃':
|
| 92 |
+
st.markdown(f"**馃 {message}**", unsafe_allow_html=True)
|
| 93 |
+
|
| 94 |
+
# Bot茫o para limpar hist贸rico
|
| 95 |
+
if st.button("Limpar hist贸rico"):
|
| 96 |
+
st.session_state['history'] = []
|