Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import torch
|
|
| 4 |
from transformers import pipeline
|
| 5 |
import datetime
|
| 6 |
from rapidfuzz import process, fuzz
|
|
|
|
| 7 |
|
| 8 |
# Load the CSV file
|
| 9 |
df = pd.read_csv("anomalies.csv", quotechar='"')
|
|
@@ -14,29 +15,39 @@ df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
|
|
| 14 |
# Fill NaN values and convert all columns to strings
|
| 15 |
df = df.fillna('').astype(str)
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
# Apply fuzzy matching on the 'ds' (date) and 'Group' columns
|
| 20 |
-
date_matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None)
|
| 21 |
-
group_matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None)
|
| 22 |
|
| 23 |
-
|
| 24 |
-
date_indices = {match[2] for match in date_matches if match[1] >= threshold}
|
| 25 |
-
group_indices = {match[2] for match in group_matches if match[1] >= threshold}
|
| 26 |
-
common_indices = list(date_indices & group_indices)
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Function to generate a response using the TAPAS model
|
| 31 |
def response(user_question, df):
|
| 32 |
a = datetime.datetime.now()
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
|
| 36 |
-
group_keyword = "IPVA"
|
| 37 |
-
|
| 38 |
-
# Filter the DataFrame by date and group
|
| 39 |
-
subset_df = filter_dataframe(df, date_str, group_keyword)
|
| 40 |
|
| 41 |
# Check if the DataFrame is empty
|
| 42 |
if subset_df.empty:
|
|
|
|
| 4 |
from transformers import pipeline
|
| 5 |
import datetime
|
| 6 |
from rapidfuzz import process, fuzz
|
| 7 |
+
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
| 8 |
|
| 9 |
# Load the CSV file
|
| 10 |
df = pd.read_csv("anomalies.csv", quotechar='"')
|
|
|
|
| 15 |
# Fill NaN values and convert all columns to strings
|
| 16 |
df = df.fillna('').astype(str)
|
| 17 |
|
| 18 |
+
# Filter 'real' higher than 10 Million
|
| 19 |
+
df= df[df['real'] >= 1000000.]
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
print(df)
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Function to remove stopwords
|
| 24 |
+
def remove_stopwords(text, stopwords=ENGLISH_STOP_WORDS):
|
| 25 |
+
return ' '.join([word for word in text.split() if word.lower() not in stopwords])
|
| 26 |
+
|
| 27 |
+
# Function to filter DataFrame by checking if any of the user question words are in the columns
|
| 28 |
+
def filter_dataframe(df, user_question, threshold=80):
|
| 29 |
+
user_question = remove_stopwords(user_question) # Remove stopwords
|
| 30 |
+
question_words = user_question.split()
|
| 31 |
+
|
| 32 |
+
mask = pd.Series([False] * len(df))
|
| 33 |
+
|
| 34 |
+
for column in df.columns:
|
| 35 |
+
for word in question_words:
|
| 36 |
+
# Apply RapidFuzz fuzzy matching on the column
|
| 37 |
+
matches = process.extract(word, df[column], scorer=fuzz.token_sort_ratio, limit=None)
|
| 38 |
+
match_indices = [match[2] for match in matches if match[1] >= threshold]
|
| 39 |
+
mask.iloc[match_indices] = True
|
| 40 |
+
|
| 41 |
+
filtered_df = df[mask]
|
| 42 |
+
|
| 43 |
+
return filtered_df
|
| 44 |
|
| 45 |
# Function to generate a response using the TAPAS model
|
| 46 |
def response(user_question, df):
|
| 47 |
a = datetime.datetime.now()
|
| 48 |
|
| 49 |
+
# Filter the DataFrame dynamically by user question
|
| 50 |
+
subset_df = filter_dataframe(df, user_question)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# Check if the DataFrame is empty
|
| 53 |
if subset_df.empty:
|