Spaces:
Sleeping
Sleeping
| import os | |
| import asyncio | |
| import logging | |
| import tempfile | |
| import requests | |
| from datetime import datetime | |
| import edge_tts | |
| import gradio as gr | |
| import torch | |
| import re | |
| from keybert import KeyBERT | |
| # Configuraci贸n b谩sica de logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| # Clave API de Pexels (configurar en Secrets de Hugging Face) | |
| PEXELS_API_KEY = os.environ.get("PEXELS_API_KEY", "YOUR_DEFAULT_API_KEY") | |
| # Inicializaci贸n del modelo KeyBERT | |
| try: | |
| kw_model = KeyBERT('distilbert-base-nli-mean-tokens') | |
| logger.info("Modelo KeyBERT cargado exitosamente.") | |
| except Exception as e: | |
| logger.error(f"Error al cargar KeyBERT: {e}") | |
| kw_model = None | |
| # --- Funciones principales optimizadas para Spaces --- | |
| async def text_to_speech(text, output_path, voice="es-ES-ElviraNeural"): | |
| """Genera audio TTS usando edge-tts""" | |
| try: | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(output_path) | |
| return True | |
| except Exception as e: | |
| logger.error(f"Error en TTS: {e}") | |
| return False | |
| def download_video(url, temp_dir): | |
| """Descarga un video desde una URL a un directorio temporal""" | |
| try: | |
| response = requests.get(url, stream=True, timeout=30) | |
| response.raise_for_status() | |
| filename = f"video_{datetime.now().strftime('%H%M%S%f')}.mp4" | |
| filepath = os.path.join(temp_dir, filename) | |
| with open(filepath, 'wb') as f: | |
| for chunk in response.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| return filepath | |
| except Exception as e: | |
| logger.error(f"Error descargando video: {e}") | |
| return None | |
| def extract_keywords(text, max_keywords=3): | |
| """Extrae palabras clave usando KeyBERT o m茅todo simple como fallback""" | |
| if kw_model: | |
| try: | |
| keywords = kw_model.extract_keywords( | |
| text, | |
| keyphrase_ngram_range=(1, 2), | |
| top_n=max_keywords, | |
| use_mmr=True, | |
| diversity=0.7 | |
| ) | |
| return [kw[0].replace(" ", "+") for kw in keywords] | |
| except Exception as e: | |
| logger.warning(f"Error KeyBERT: {e}") | |
| # Fallback: m茅todo simple | |
| words = re.findall(r'\b\w+\b', text.lower()) | |
| stop_words = {"el", "la", "los", "las", "de", "en", "y", "a", "que", "es", "por"} | |
| return list(set([w for w in words if len(w) > 3 and w not in stop_words][:max_keywords])) | |
| def search_pexels_videos(query_list, per_query=2): | |
| """Busca videos en Pexels usando su API oficial""" | |
| if not PEXELS_API_KEY: | |
| logger.error("API_KEY de Pexels no configurada") | |
| return [] | |
| headers = {"Authorization": PEXELS_API_KEY} | |
| video_urls = [] | |
| for query in query_list: | |
| try: | |
| params = { | |
| "query": query, | |
| "per_page": per_query, | |
| "orientation": "landscape", | |
| "size": "medium" | |
| } | |
| response = requests.get( | |
| "https://api.pexels.com/videos/search", | |
| headers=headers, | |
| params=params, | |
| timeout=15 | |
| ) | |
| if response.status_code == 200: | |
| videos = response.json().get("videos", []) | |
| for video in videos: | |
| video_files = video.get("video_files", []) | |
| if video_files: | |
| # Seleccionar el video con la mejor resoluci贸n | |
| best_quality = max( | |
| video_files, | |
| key=lambda x: x.get("width", 0) * x.get("height", 0) | |
| ) | |
| video_urls.append(best_quality["link"]) | |
| except Exception as e: | |
| logger.error(f"Error buscando videos: {e}") | |
| return video_urls | |
| def create_video(audio_path, video_paths, output_path): | |
| """Crea el video final usando FFmpeg""" | |
| try: | |
| # Crear archivo de lista para concatenaci贸n | |
| with open("input_list.txt", "w") as f: | |
| for path in video_paths: | |
| f.write(f"file '{path}'\n") | |
| # Comando FFmpeg para concatenar videos y a帽adir audio | |
| cmd = [ | |
| "ffmpeg", "-y", | |
| "-f", "concat", | |
| "-safe", "0", | |
| "-i", "input_list.txt", | |
| "-i", audio_path, | |
| "-c", "copy", | |
| "-shortest", | |
| output_path | |
| ] | |
| subprocess.run(cmd, check=True) | |
| return True | |
| except Exception as e: | |
| logger.error(f"Error creando video: {e}") | |
| return False | |
| async def generate_video(text, music_url=None): | |
| """Funci贸n principal para generar el video""" | |
| temp_dir = tempfile.mkdtemp() | |
| all_files = [] | |
| try: | |
| # 1. Generar audio TTS | |
| tts_path = os.path.join(temp_dir, "audio.mp3") | |
| if not await text_to_speech(text, tts_path): | |
| return None, "Error generando voz" | |
| all_files.append(tts_path) | |
| # 2. Extraer palabras clave | |
| keywords = extract_keywords(text) | |
| logger.info(f"Palabras clave identificadas: {keywords}") | |
| # 3. Buscar y descargar videos | |
| video_urls = search_pexels_videos(keywords) | |
| if not video_urls: | |
| return None, "No se encontraron videos para las palabras clave" | |
| video_paths = [] | |
| for url in video_urls: | |
| path = download_video(url, temp_dir) | |
| if path: | |
| video_paths.append(path) | |
| all_files.append(path) | |
| if not video_paths: | |
| return None, "Error descargando videos" | |
| # 4. Crear video final | |
| output_path = os.path.join(temp_dir, "final_video.mp4") | |
| if create_video(tts_path, video_paths, output_path): | |
| return output_path, "Video creado exitosamente" | |
| else: | |
| return None, "Error en la creaci贸n del video" | |
| except Exception as e: | |
| logger.exception("Error inesperado") | |
| return None, f"Error: {str(e)}" | |
| finally: | |
| # Limpieza opcional (Hugging Face limpia autom谩ticamente) | |
| pass | |
| # --- Interfaz de Gradio --- | |
| with gr.Blocks(title="Generador Autom谩tico de Videos con IA", theme="soft") as demo: | |
| gr.Markdown("# 馃幀 Generador Autom谩tico de Videos con IA") | |
| gr.Markdown("Transforma texto en videos usando contenido de Pexels y voz sintetizada") | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_input = gr.Textbox( | |
| label="Texto para el video", | |
| placeholder="Describe el contenido que quieres en el video...", | |
| lines=5 | |
| ) | |
| generate_btn = gr.Button("Generar Video", variant="primary") | |
| with gr.Column(): | |
| video_output = gr.Video(label="Video Generado") | |
| status_output = gr.Textbox(label="Estado") | |
| generate_btn.click( | |
| fn=generate_video, | |
| inputs=[text_input], | |
| outputs=[video_output, status_output] | |
| ) | |
| gr.Markdown("### C贸mo funciona:") | |
| gr.Markdown(""" | |
| 1. Ingresa un texto descriptivo | |
| 2. Nuestra IA extrae palabras clave | |
| 3. Buscamos videos relacionados en Pexels | |
| 4. Generamos voz con Edge TTS | |
| 5. Combinamos todo en un video final | |
| """) | |
| # Para Hugging Face Spaces | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860) |