Spaces:
Sleeping
Sleeping
| import os | |
| import asyncio | |
| import logging | |
| import tempfile | |
| import requests | |
| import re | |
| import math | |
| import edge_tts | |
| import gradio as gr | |
| from pydub import AudioSegment | |
| import subprocess | |
| # Configuración básica de logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| # Clave API de Pexels (configurar en Secrets de Hugging Face) | |
| PEXELS_API_KEY = os.environ.get("PEXELS_API_KEY", "YOUR_API_KEY") | |
| # --- Funciones optimizadas y corregidas --- | |
| def extract_keywords(text, max_keywords=3): | |
| """Extrae palabras clave usando un método mejorado""" | |
| # Limpieza de texto y tokenización | |
| text = re.sub(r'[^\w\s]', '', text.lower()) | |
| words = re.findall(r'\b\w+\b', text) | |
| # Palabras comunes a excluir (lista ampliada) | |
| stop_words = { | |
| "el", "la", "los", "las", "de", "en", "y", "a", "que", "es", "por", | |
| "un", "una", "con", "se", "del", "al", "lo", "como", "para", "su", "sus" | |
| } | |
| # Frecuencia de palabras y filtrado | |
| word_freq = {} | |
| for word in words: | |
| if len(word) > 3 and word not in stop_words: | |
| word_freq[word] = word_freq.get(word, 0) + 1 | |
| # Ordenar por frecuencia y longitud | |
| sorted_words = sorted(word_freq.items(), key=lambda x: (x[1], len(x[0])), reverse=True) | |
| return [word for word, _ in sorted_words[:max_keywords]] | |
| def search_pexels_videos(keywords, per_query=2): | |
| """Busca videos en Pexels con manejo de errores mejorado""" | |
| if not PEXELS_API_KEY or not keywords: | |
| return [] | |
| headers = {"Authorization": PEXELS_API_KEY} | |
| video_urls = [] | |
| for query in keywords: | |
| try: | |
| logger.info(f"Buscando videos para: '{query}'") | |
| params = { | |
| "query": query, | |
| "per_page": per_query, | |
| "orientation": "landscape", | |
| "size": "medium" | |
| } | |
| response = requests.get( | |
| "https://api.pexels.com/videos/search", | |
| headers=headers, | |
| params=params, | |
| timeout=20 | |
| ) | |
| if response.status_code == 200: | |
| data = response.json() | |
| videos = data.get("videos", []) | |
| for video in videos: | |
| video_files = video.get("video_files", []) | |
| if video_files: | |
| # Seleccionar el video con la mejor resolución disponible | |
| best_quality = max( | |
| video_files, | |
| key=lambda x: x.get("width", 0) * x.get("height", 0) | |
| ) | |
| video_urls.append(best_quality["link"]) | |
| logger.info(f"Video encontrado: {best_quality['link']}") | |
| else: | |
| logger.warning(f"Respuesta Pexels: {response.status_code}") | |
| except Exception as e: | |
| logger.error(f"Error buscando videos: {str(e)}") | |
| return video_urls | |
| async def generate_tts(text, output_path, voice="es-ES-ElviraNeural"): | |
| """Genera audio TTS con manejo de errores""" | |
| try: | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(output_path) | |
| logger.info("Audio TTS generado exitosamente") | |
| return True | |
| except Exception as e: | |
| logger.error(f"Error en TTS: {str(e)}") | |
| return False | |
| def download_video(url, temp_dir): | |
| """Descarga videos con manejo robusto de errores""" | |
| try: | |
| logger.info(f"Descargando video: {url}") | |
| response = requests.get(url, stream=True, timeout=40) | |
| response.raise_for_status() | |
| filename = f"video_{os.getpid()}_{datetime.now().strftime('%H%M%S%f')}.mp4" | |
| filepath = os.path.join(temp_dir, filename) | |
| with open(filepath, 'wb') as f: | |
| for chunk in response.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| logger.info(f"Video descargado: {filepath}") | |
| return filepath | |
| except Exception as e: | |
| logger.error(f"Error descargando video: {str(e)}") | |
| return None | |
| def create_video(audio_path, video_paths, output_path): | |
| """Crea el video final con FFmpeg - VERSIÓN CORREGIDA""" | |
| try: | |
| # 1. Crear archivo de lista para concatenación | |
| list_file_path = os.path.join(os.path.dirname(video_paths[0]), "input.txt") | |
| with open(list_file_path, "w") as f: | |
| for path in video_paths: | |
| f.write(f"file '{os.path.basename(path)}'\n") | |
| # 2. Preparar comando FFmpeg | |
| cmd = [ | |
| "ffmpeg", "-y", | |
| "-f", "concat", | |
| "-safe", "0", | |
| "-i", list_file_path, | |
| "-i", audio_path, | |
| "-c:v", "libx264", # Codificar video en lugar de copiar | |
| "-preset", "fast", | |
| "-crf", "23", | |
| "-c:a", "aac", | |
| "-b:a", "192k", | |
| "-shortest", | |
| "-movflags", "+faststart", | |
| output_path | |
| ] | |
| # 3. Ejecutar FFmpeg con logging detallado | |
| logger.info("Ejecutando FFmpeg: " + " ".join(cmd)) | |
| result = subprocess.run( | |
| cmd, | |
| cwd=os.path.dirname(video_paths[0]), | |
| stdout=subprocess.PIPE, | |
| stderr=subprocess.PIPE, | |
| text=True | |
| ) | |
| if result.returncode != 0: | |
| logger.error(f"Error FFmpeg (code {result.returncode}): {result.stderr}") | |
| return False | |
| logger.info("Video creado exitosamente") | |
| return True | |
| except Exception as e: | |
| logger.error(f"Error creando video: {str(e)}") | |
| return False | |
| finally: | |
| try: | |
| if os.path.exists(list_file_path): | |
| os.remove(list_file_path) | |
| except: | |
| pass | |
| async def generate_video(text, music_file=None): | |
| """Función principal con manejo mejorado de errores""" | |
| temp_dir = tempfile.mkdtemp() | |
| logger.info(f"Directorio temporal creado: {temp_dir}") | |
| try: | |
| # 1. Generar audio TTS | |
| tts_path = os.path.join(temp_dir, "audio.mp3") | |
| if not await generate_tts(text, tts_path): | |
| return None, "❌ Error generando voz" | |
| # 2. Extraer palabras clave | |
| keywords = extract_keywords(text) | |
| if not keywords: | |
| return None, "❌ No se pudieron extraer palabras clave del texto" | |
| logger.info(f"Palabras clave identificadas: {keywords}") | |
| # 3. Buscar y descargar videos | |
| video_urls = search_pexels_videos(keywords) | |
| if not video_urls: | |
| return None, "❌ No se encontraron videos para las palabras clave" | |
| video_paths = [] | |
| for url in video_urls: | |
| path = download_video(url, temp_dir) | |
| if path: | |
| video_paths.append(path) | |
| if not video_paths: | |
| return None, "❌ Error descargando videos" | |
| # 4. Crear video final | |
| output_path = os.path.join(temp_dir, "final_video.mp4") | |
| if not create_video(tts_path, video_paths, output_path): | |
| return None, "❌ Error en la creación del video" | |
| return output_path, "✅ Video creado exitosamente" | |
| except Exception as e: | |
| logger.exception("Error inesperado") | |
| return None, f"❌ Error crítico: {str(e)}" | |
| finally: | |
| # Espacios maneja la limpieza automática | |
| pass | |
| # --- Interfaz de Gradio mejorada --- | |
| with gr.Blocks(title="Generador Automático de Videos", theme=gr.themes.Soft(), css=".gradio-container {max-width: 800px}") as demo: | |
| gr.Markdown(""" | |
| # 🎬 Generador Automático de Videos con IA | |
| Transforma texto en videos usando contenido de Pexels y voz sintetizada | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| text_input = gr.Textbox( | |
| label="Texto para el video", | |
| placeholder="Ej: Un hermoso paisaje montañoso con ríos cristalinos...", | |
| lines=5, | |
| max_lines=10 | |
| ) | |
| generate_btn = gr.Button("✨ Generar Video", variant="primary") | |
| with gr.Accordion("Configuración avanzada", open=False): | |
| voice_select = gr.Dropdown( | |
| ["es-ES-ElviraNeural", "es-MX-DaliaNeural", "es-US-AlonsoNeural"], | |
| label="Voz", | |
| value="es-ES-ElviraNeural" | |
| ) | |
| with gr.Column(scale=3): | |
| video_output = gr.Video( | |
| label="Video Generado", | |
| interactive=False, | |
| height=400 | |
| ) | |
| status_output = gr.Textbox( | |
| label="Estado", | |
| interactive=False, | |
| show_label=False, | |
| container=False | |
| ) | |
| generate_btn.click( | |
| fn=lambda: (None, "⏳ Procesando... Esto puede tomar 1-2 minutos"), | |
| outputs=[video_output, status_output], | |
| queue=False | |
| ).then( | |
| fn=generate_video, | |
| inputs=[text_input], | |
| outputs=[video_output, status_output] | |
| ) | |
| gr.Markdown("### Instrucciones:") | |
| gr.Markdown(""" | |
| 1. Describe el video que deseas crear (mínimo 20 palabras) | |
| 2. Haz clic en "Generar Video" | |
| 3. El sistema buscará videos relevantes en Pexels | |
| 4. Creará un video con narración automática | |
| """) | |
| gr.Markdown("### Ejemplos:") | |
| examples = gr.Examples( | |
| examples=[ | |
| ["Un atardecer en la playa con palmeras y olas suaves"], | |
| ["Un bosque otoñal con hojas de colores y senderos naturales"], | |
| ["La ciudad de noche con rascacielos iluminados y tráfico"] | |
| ], | |
| inputs=[text_input], | |
| label="Ejemplos para probar" | |
| ) | |
| # Para Hugging Face Spaces | |
| if __name__ == "__main__": | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=False, | |
| show_error=True | |
| ) |