Spaces:
Runtime error
Runtime error
Test old version
Browse files
app.py
CHANGED
|
@@ -1,35 +1,96 @@
|
|
| 1 |
import sys
|
| 2 |
-
|
| 3 |
-
|
| 4 |
import torch
|
| 5 |
import transformers
|
| 6 |
import gradio as gr
|
| 7 |
|
|
|
|
|
|
|
| 8 |
from src.client.remote_model import DistributedBloomForCausalLM
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
| 1 |
import sys
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 3 |
import torch
|
| 4 |
import transformers
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
sys.path.insert(0, './petals/')
|
| 8 |
+
|
| 9 |
from src.client.remote_model import DistributedBloomForCausalLM
|
| 10 |
|
| 11 |
+
MODEL_NAME = "bigscience/test-bloomd-6b3" # select model you like
|
| 12 |
+
INITIAL_PEERS = ["/ip4/193.106.95.184/tcp/31000/p2p/QmSg7izCDtowVTACbUmWvEiQZNY4wgCQ9T9Doo66K59X6q"]
|
| 13 |
+
|
| 14 |
+
tokenizer_bloomd_6b3 = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
|
| 15 |
+
model_bloomd_6b3 = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3",
|
| 16 |
+
initial_peers=INITIAL_PEERS,
|
| 17 |
+
low_cpu_mem_usage=True, torch_dtype=torch.float32)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
tokenizer_DialoGPT_small = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
| 21 |
+
model_DialoGPT_small = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
|
| 22 |
+
|
| 23 |
+
tokenizer_DialoGPT_medium = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 24 |
+
model_DialoGPT_medium = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 25 |
+
|
| 26 |
+
tokenizer_DialoGPT_large = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
| 27 |
+
model_DialoGPT_large = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def predict(
|
| 31 |
+
input_text,
|
| 32 |
+
history=None,
|
| 33 |
+
person_description=None,
|
| 34 |
+
number_of_new_tokens=1000,
|
| 35 |
+
model_name=None,
|
| 36 |
+
del_hist=None
|
| 37 |
+
):
|
| 38 |
+
if history is None or del_hist == 'delete history':
|
| 39 |
+
history = []
|
| 40 |
+
if model_name == 'DialoGPT-small':
|
| 41 |
+
model = model_DialoGPT_small
|
| 42 |
+
tokenizer = tokenizer_DialoGPT_small
|
| 43 |
+
elif model_name == 'DialoGPT-medium':
|
| 44 |
+
model = model_DialoGPT_medium
|
| 45 |
+
tokenizer = tokenizer_DialoGPT_medium
|
| 46 |
+
elif model_name == 'DialoGPT-large':
|
| 47 |
+
model = model_DialoGPT_large
|
| 48 |
+
tokenizer = tokenizer_DialoGPT_large
|
| 49 |
+
elif model_name == 'test-bloomd-6b3':
|
| 50 |
+
model = tokenizer_bloomd_6b3
|
| 51 |
+
tokenizer = model_bloomd_6b3
|
| 52 |
+
else:
|
| 53 |
+
model = model_DialoGPT_medium
|
| 54 |
+
tokenizer = tokenizer_DialoGPT_medium
|
| 55 |
+
|
| 56 |
+
person_description_ids = tokenizer.encode(person_description + tokenizer.eos_token, return_tensors='pt')
|
| 57 |
+
new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
|
| 58 |
+
|
| 59 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
| 60 |
+
input_with_desc_ids = torch.cat([person_description_ids, bot_input_ids], dim=-1)
|
| 61 |
+
max_token_count = number_of_new_tokens + len(input_with_desc_ids[0])
|
| 62 |
+
history = model.generate(input_with_desc_ids, max_length=max_token_count,
|
| 63 |
+
pad_token_id=tokenizer.eos_token_id).tolist()
|
| 64 |
+
history[0] = history[0][len(person_description_ids[0]):]
|
| 65 |
+
|
| 66 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
| 67 |
+
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)]
|
| 68 |
+
return response, history
|
| 69 |
+
|
| 70 |
|
| 71 |
+
gr.Interface(
|
| 72 |
+
fn=predict,
|
| 73 |
+
inputs=[
|
| 74 |
+
gr.Textbox(label='Input message', lines=1, placeholder="Enter your message..."),
|
| 75 |
+
"state",
|
| 76 |
+
gr.Textbox(label='Person Description', lines=2, placeholder="Enter a description of the person..."),
|
| 77 |
+
gr.Slider(label='Number of new tokens', minimum=2, maximum=100, value=10),
|
| 78 |
+
gr.Radio(
|
| 79 |
+
label='Model name',
|
| 80 |
+
choices=[
|
| 81 |
+
'DialoGPT-small',
|
| 82 |
+
'DialoGPT-medium',
|
| 83 |
+
'DialoGPT-large',
|
| 84 |
+
'test-bloomd-6b3'
|
| 85 |
+
]
|
| 86 |
+
),
|
| 87 |
+
gr.Radio(
|
| 88 |
+
label='Delete history',
|
| 89 |
+
value="Don't delete history",
|
| 90 |
+
choices=[
|
| 91 |
+
'delete history',
|
| 92 |
+
"Don't delete history"
|
| 93 |
+
]),
|
| 94 |
+
],
|
| 95 |
+
outputs=[gr.Chatbot(label='History of the dialogue'), "state"],
|
| 96 |
+
).launch(),
|