Spaces:
Sleeping
Sleeping
fixed cosmetics
Browse filesRemoved the broken st.experimental_rerun() and replaced it with st.session_state logic to reset filters.
Wrapped long row labels into multiple lines via a helper (using <br>), which compacts the heatmap.
Simplified Cell Details: clicking lists only the names & values in a table—no extra plots.
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
-
import base64, pickle
|
| 5 |
import plotly.express as px
|
| 6 |
from streamlit_plotly_events import plotly_events
|
| 7 |
|
|
@@ -14,35 +14,58 @@ df_encoded = "gASVJhkAAAAAAACMEXBhbmRhcy5jb3JlLmZyYW1llIwJRGF0YUZyYW1llJOUKYGUfZ
|
|
| 14 |
filled_matrices = pickle.loads(base64.b64decode(filled_matrices_encoded))
|
| 15 |
df = pickle.loads(base64.b64decode(df_encoded))
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# ---------------------------------------------------
|
| 18 |
# Sidebar: Filters
|
| 19 |
# ---------------------------------------------------
|
| 20 |
st.sidebar.title("Filters")
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
standing_opts = sorted(df['Standing'].dropna().astype(str).unique())
|
| 25 |
dept_opts = sorted(df['Dept Track'].dropna().astype(str).unique())
|
| 26 |
|
| 27 |
standing_sel = st.sidebar.multiselect(
|
| 28 |
-
"Filter by Standing:",
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
)
|
| 31 |
dept_sel = st.sidebar.multiselect(
|
| 32 |
-
"Filter by Dept Track:",
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
)
|
| 35 |
|
| 36 |
-
# Auto
|
| 37 |
mask = (
|
| 38 |
df['Standing'].astype(str).isin(standing_sel) &
|
| 39 |
df['Dept Track'].astype(str).isin(dept_sel)
|
| 40 |
)
|
| 41 |
-
all_names = sorted(df['Name'].astype(str).unique())
|
| 42 |
name_options = sorted(df.loc[mask, 'Name'].astype(str).unique())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
name_sel = st.sidebar.multiselect(
|
| 44 |
-
"Select Faculty:",
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
)
|
| 47 |
|
| 48 |
# ---------------------------------------------------
|
|
@@ -50,26 +73,30 @@ name_sel = st.sidebar.multiselect(
|
|
| 50 |
# ---------------------------------------------------
|
| 51 |
st.title("Faculty Heatmap Explorer")
|
| 52 |
|
| 53 |
-
# 1) Heatmap
|
| 54 |
if not name_sel:
|
| 55 |
-
st.
|
| 56 |
fig = px.imshow(
|
| 57 |
[[0]], labels={'x':'','y':'','color':'value'},
|
| 58 |
text_auto='.2f', title="No faculty selected"
|
| 59 |
)
|
| 60 |
st.plotly_chart(fig, use_container_width=True)
|
| 61 |
else:
|
| 62 |
-
# Sum
|
| 63 |
sum_df = None
|
| 64 |
for name in name_sel:
|
| 65 |
mat = filled_matrices[name]
|
| 66 |
sum_df = mat if sum_df is None else sum_df.add(mat, fill_value=0)
|
| 67 |
avg_df = sum_df.div(len(name_sel))
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
fig = px.imshow(
|
| 70 |
-
avg_df,
|
| 71 |
-
x=
|
| 72 |
-
y=
|
| 73 |
labels={'color':'Avg value'},
|
| 74 |
text_auto='.2f',
|
| 75 |
title=f"Avg Heatmap for {len(name_sel)} Faculty"
|
|
@@ -77,60 +104,37 @@ else:
|
|
| 77 |
fig.update_yaxes(autorange='reversed')
|
| 78 |
st.plotly_chart(fig, use_container_width=True)
|
| 79 |
|
| 80 |
-
# 2) Click
|
| 81 |
st.subheader("Cell Details")
|
| 82 |
events = plotly_events(fig, click_event=True, key="heatmap")
|
| 83 |
if events:
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
# Gather non-zero values
|
| 88 |
records = []
|
| 89 |
for name in name_sel:
|
| 90 |
val = filled_matrices[name].at[y_lab, x_lab]
|
| 91 |
if val != 0:
|
| 92 |
-
|
| 93 |
-
records.append({
|
| 94 |
-
'Name': name,
|
| 95 |
-
'Value': val,
|
| 96 |
-
'Dept Track': str(row['Dept Track']),
|
| 97 |
-
'Standing': str(row['Standing'])
|
| 98 |
-
})
|
| 99 |
|
| 100 |
if records:
|
| 101 |
-
detail_df = pd.DataFrame(records)
|
| 102 |
-
|
| 103 |
-
dept_df = (
|
| 104 |
-
detail_df.groupby(['Dept Track','Value'])
|
| 105 |
-
.size()
|
| 106 |
-
.reset_index(name='Count')
|
| 107 |
-
)
|
| 108 |
-
fig_dept = px.line(
|
| 109 |
-
dept_df,
|
| 110 |
-
x='Value', y='Count',
|
| 111 |
-
color='Dept Track', markers=True,
|
| 112 |
-
title=f"Distribution by Dept Track (x={x_lab}, y={y_lab})"
|
| 113 |
-
)
|
| 114 |
-
st.plotly_chart(fig_dept, use_container_width=True)
|
| 115 |
-
|
| 116 |
-
# Standing distribution
|
| 117 |
-
stand_df = (
|
| 118 |
-
detail_df.groupby(['Standing','Value'])
|
| 119 |
-
.size()
|
| 120 |
-
.reset_index(name='Count')
|
| 121 |
-
)
|
| 122 |
-
fig_st = px.line(
|
| 123 |
-
stand_df,
|
| 124 |
-
x='Value', y='Count',
|
| 125 |
-
color='Standing', markers=True,
|
| 126 |
-
title=f"Distribution by Standing (x={x_lab}, y={y_lab})"
|
| 127 |
-
)
|
| 128 |
-
st.plotly_chart(fig_st, use_container_width=True)
|
| 129 |
-
|
| 130 |
-
# Table of non-zero values
|
| 131 |
-
table_df = detail_df[['Name','Value']].sort_values('Value', ascending=False)
|
| 132 |
-
st.dataframe(table_df)
|
| 133 |
else:
|
| 134 |
-
st.
|
| 135 |
else:
|
| 136 |
-
st.write("Click on a heatmap cell to
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
+
import base64, pickle, textwrap
|
| 5 |
import plotly.express as px
|
| 6 |
from streamlit_plotly_events import plotly_events
|
| 7 |
|
|
|
|
| 14 |
filled_matrices = pickle.loads(base64.b64decode(filled_matrices_encoded))
|
| 15 |
df = pickle.loads(base64.b64decode(df_encoded))
|
| 16 |
|
| 17 |
+
# ---------------------------------------------------
|
| 18 |
+
# Helper: wrap long labels
|
| 19 |
+
# ---------------------------------------------------
|
| 20 |
+
def wrap_labels(labels, width=40):
|
| 21 |
+
return ["<br>".join(textwrap.wrap(lbl, width)) for lbl in labels]
|
| 22 |
+
|
| 23 |
# ---------------------------------------------------
|
| 24 |
# Sidebar: Filters
|
| 25 |
# ---------------------------------------------------
|
| 26 |
st.sidebar.title("Filters")
|
| 27 |
+
# Ensure session state keys exist
|
| 28 |
+
if 'standing' not in st.session_state:
|
| 29 |
+
st.session_state.standing = sorted(df['Standing'].dropna().astype(str).unique())
|
| 30 |
+
if 'dept' not in st.session_state:
|
| 31 |
+
st.session_state.dept = sorted(df['Dept Track'].dropna().astype(str).unique())
|
| 32 |
+
|
| 33 |
+
clear = st.sidebar.button("Clear All Filters")
|
| 34 |
+
if clear:
|
| 35 |
+
st.session_state.standing = sorted(df['Standing'].dropna().astype(str).unique())
|
| 36 |
+
st.session_state.dept = sorted(df['Dept Track'].dropna().astype(str).unique())
|
| 37 |
|
| 38 |
standing_opts = sorted(df['Standing'].dropna().astype(str).unique())
|
| 39 |
dept_opts = sorted(df['Dept Track'].dropna().astype(str).unique())
|
| 40 |
|
| 41 |
standing_sel = st.sidebar.multiselect(
|
| 42 |
+
"Filter by Standing:",
|
| 43 |
+
options=standing_opts,
|
| 44 |
+
default=st.session_state.standing,
|
| 45 |
+
key='standing'
|
| 46 |
)
|
| 47 |
dept_sel = st.sidebar.multiselect(
|
| 48 |
+
"Filter by Dept Track:",
|
| 49 |
+
options=dept_opts,
|
| 50 |
+
default=st.session_state.dept,
|
| 51 |
+
key='dept'
|
| 52 |
)
|
| 53 |
|
| 54 |
+
# Auto-filter names based on filters
|
| 55 |
mask = (
|
| 56 |
df['Standing'].astype(str).isin(standing_sel) &
|
| 57 |
df['Dept Track'].astype(str).isin(dept_sel)
|
| 58 |
)
|
|
|
|
| 59 |
name_options = sorted(df.loc[mask, 'Name'].astype(str).unique())
|
| 60 |
+
|
| 61 |
+
if 'names' not in st.session_state or clear:
|
| 62 |
+
st.session_state.names = name_options
|
| 63 |
+
|
| 64 |
name_sel = st.sidebar.multiselect(
|
| 65 |
+
"Select Faculty:",
|
| 66 |
+
options=name_options,
|
| 67 |
+
default=st.session_state.names,
|
| 68 |
+
key='names'
|
| 69 |
)
|
| 70 |
|
| 71 |
# ---------------------------------------------------
|
|
|
|
| 73 |
# ---------------------------------------------------
|
| 74 |
st.title("Faculty Heatmap Explorer")
|
| 75 |
|
| 76 |
+
# 1) Heatmap display
|
| 77 |
if not name_sel:
|
| 78 |
+
st.warning("No faculty selected — please choose at least one.")
|
| 79 |
fig = px.imshow(
|
| 80 |
[[0]], labels={'x':'','y':'','color':'value'},
|
| 81 |
text_auto='.2f', title="No faculty selected"
|
| 82 |
)
|
| 83 |
st.plotly_chart(fig, use_container_width=True)
|
| 84 |
else:
|
| 85 |
+
# Sum & average
|
| 86 |
sum_df = None
|
| 87 |
for name in name_sel:
|
| 88 |
mat = filled_matrices[name]
|
| 89 |
sum_df = mat if sum_df is None else sum_df.add(mat, fill_value=0)
|
| 90 |
avg_df = sum_df.div(len(name_sel))
|
| 91 |
|
| 92 |
+
# Wrap y labels (rows)
|
| 93 |
+
wrapped_y = wrap_labels(list(avg_df.index), width=40)
|
| 94 |
+
wrapped_x = list(avg_df.columns) # x labels usually short
|
| 95 |
+
|
| 96 |
fig = px.imshow(
|
| 97 |
+
avg_df.values,
|
| 98 |
+
x=wrapped_x,
|
| 99 |
+
y=wrapped_y,
|
| 100 |
labels={'color':'Avg value'},
|
| 101 |
text_auto='.2f',
|
| 102 |
title=f"Avg Heatmap for {len(name_sel)} Faculty"
|
|
|
|
| 104 |
fig.update_yaxes(autorange='reversed')
|
| 105 |
st.plotly_chart(fig, use_container_width=True)
|
| 106 |
|
| 107 |
+
# 2) Click-to-list values
|
| 108 |
st.subheader("Cell Details")
|
| 109 |
events = plotly_events(fig, click_event=True, key="heatmap")
|
| 110 |
if events:
|
| 111 |
+
# Determine original row & col from pointNumber
|
| 112 |
+
n_cols = avg_df.shape[1]
|
| 113 |
+
pt = events[0]
|
| 114 |
+
pt_num = pt.get('pointNumber', None)
|
| 115 |
+
if pt_num is not None:
|
| 116 |
+
row_idx = pt_num // n_cols
|
| 117 |
+
col_idx = pt_num % n_cols
|
| 118 |
+
y_lab = avg_df.index[row_idx]
|
| 119 |
+
x_lab = avg_df.columns[col_idx]
|
| 120 |
+
else:
|
| 121 |
+
# fallback: use string labels (unlikely)
|
| 122 |
+
y_lab_wrapped = pt['y']
|
| 123 |
+
x_lab = pt['x']
|
| 124 |
+
# map back wrapped to original
|
| 125 |
+
y_lab = avg_df.index[wrapped_y.index(y_lab_wrapped)]
|
| 126 |
|
| 127 |
# Gather non-zero values
|
| 128 |
records = []
|
| 129 |
for name in name_sel:
|
| 130 |
val = filled_matrices[name].at[y_lab, x_lab]
|
| 131 |
if val != 0:
|
| 132 |
+
records.append({'Name': name, 'Value': val})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
if records:
|
| 135 |
+
detail_df = pd.DataFrame(records).sort_values('Value', ascending=False)
|
| 136 |
+
st.table(detail_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
else:
|
| 138 |
+
st.info("No non-zero values for this cell.")
|
| 139 |
else:
|
| 140 |
+
st.write("Click on a heatmap cell to list faculty and their values.")
|