Divyansh Kushwaha
commited on
Commit
·
d97cb07
1
Parent(s):
1b9de11
Utils file updated
Browse files
utils.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from bs4 import BeautifulSoup
|
| 2 |
import requests
|
| 3 |
from langchain.schema import HumanMessage
|
|
@@ -7,11 +8,14 @@ from dotenv import load_dotenv
|
|
| 7 |
import os
|
| 8 |
from transformers import pipeline
|
| 9 |
|
|
|
|
| 10 |
load_dotenv()
|
| 11 |
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
| 12 |
|
| 13 |
-
|
|
|
|
| 14 |
|
|
|
|
| 15 |
def extract_titles_and_summaries(company_name, num_articles=10):
|
| 16 |
url = f"https://economictimes.indiatimes.com/topic/{company_name}/news"
|
| 17 |
try:
|
|
@@ -48,10 +52,11 @@ def extract_titles_and_summaries(company_name, num_articles=10):
|
|
| 48 |
print(f"An error occurred: {e}")
|
| 49 |
return []
|
| 50 |
|
|
|
|
| 51 |
def perform_sentiment_analysis(news_data):
|
| 52 |
from transformers import pipeline
|
| 53 |
articles = news_data.get("Articles", [])
|
| 54 |
-
pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis",device=1)
|
| 55 |
sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
|
| 56 |
|
| 57 |
for article in articles:
|
|
@@ -77,13 +82,15 @@ def perform_sentiment_analysis(news_data):
|
|
| 77 |
|
| 78 |
return news_data, sentiment_counts
|
| 79 |
|
|
|
|
| 80 |
def extract_topics_with_hf(news_data):
|
| 81 |
structured_data = {
|
| 82 |
"Company": news_data.get("Company", "Unknown"),
|
| 83 |
"Articles": []
|
| 84 |
}
|
| 85 |
-
topic_pipe = pipeline("text-classification", model="valurank/distilroberta-topic-classification",device=1)
|
| 86 |
articles = news_data.get("Articles", [])
|
|
|
|
| 87 |
for article in articles:
|
| 88 |
content = f"{article['Title']} {article['Summary']}"
|
| 89 |
topics_result = topic_pipe(content, top_k=3)
|
|
@@ -98,10 +105,12 @@ def extract_topics_with_hf(news_data):
|
|
| 98 |
})
|
| 99 |
return structured_data
|
| 100 |
|
|
|
|
| 101 |
def generate_final_sentiment(news_data, sentiment_counts):
|
| 102 |
company_name = news_data["Company"]
|
| 103 |
total_articles = sum(sentiment_counts.values())
|
| 104 |
combined_summaries = " ".join([article["Summary"] for article in news_data["Articles"]])
|
|
|
|
| 105 |
prompt = f"""
|
| 106 |
Based on the analysis of {total_articles} articles about the company "{company_name}":
|
| 107 |
- Positive articles: {sentiment_counts['Positive']}
|
|
@@ -109,22 +118,26 @@ def generate_final_sentiment(news_data, sentiment_counts):
|
|
| 109 |
- Neutral articles: {sentiment_counts['Neutral']}
|
| 110 |
The following are the summarized key points from the articles: "{combined_summaries}".
|
| 111 |
Provide a single, concise summary that integrates the overall sentiment analysis and key news highlights while maintaining a natural flow. Explain its implications for the company's reputation, stock potential, and public perception.
|
| 112 |
-
Respond **ONLY** with a well-structured very
|
| 113 |
"""
|
| 114 |
-
|
|
|
|
| 115 |
final_sentiment = response if response else "Sentiment analysis summary not available."
|
| 116 |
-
return final_sentiment.content
|
| 117 |
|
|
|
|
| 118 |
def extract_json(response):
|
| 119 |
try:
|
| 120 |
return json.loads(response)
|
| 121 |
except json.JSONDecodeError:
|
| 122 |
return {}
|
| 123 |
-
|
|
|
|
| 124 |
def compare_articles(news_data, sentiment_counts):
|
| 125 |
articles = news_data.get("Articles", [])
|
| 126 |
all_topics = [set(article["Topics"]) for article in articles]
|
| 127 |
common_topics = set.intersection(*all_topics) if all_topics else set()
|
|
|
|
| 128 |
topics_prompt = f"""
|
| 129 |
Analyze the following article topics and identify **only three** key themes that are common across multiple articles,
|
| 130 |
even if they are phrased differently. The topics from each article are:
|
|
@@ -133,10 +146,12 @@ def compare_articles(news_data, sentiment_counts):
|
|
| 133 |
Respond **ONLY** with a JSON format:
|
| 134 |
{{"CommonTopics": ["topic1", "topic2", "topic3"]}}
|
| 135 |
"""
|
|
|
|
| 136 |
response = llm.invoke([HumanMessage(content=topics_prompt)]).content
|
| 137 |
contextual_common_topics = extract_json(response).get("CommonTopics", list(common_topics))[:3] # Limit to 3 topics
|
| 138 |
|
| 139 |
total_articles = sum(sentiment_counts.values())
|
|
|
|
| 140 |
comparison_prompt = f"""
|
| 141 |
Provide a high-level summary comparing {total_articles} news articles about "{news_data['Company']}":
|
| 142 |
- Sentiment distribution: {sentiment_counts}
|
|
@@ -155,9 +170,12 @@ def compare_articles(news_data, sentiment_counts):
|
|
| 155 |
]
|
| 156 |
}}
|
| 157 |
"""
|
|
|
|
| 158 |
response = llm.invoke([HumanMessage(content=comparison_prompt)]).content
|
| 159 |
coverage_differences = extract_json(response).get("Coverage Differences", [])
|
|
|
|
| 160 |
final_sentiment = generate_final_sentiment(news_data, sentiment_counts)
|
|
|
|
| 161 |
return {
|
| 162 |
"Company": news_data["Company"],
|
| 163 |
"Articles": articles,
|
|
@@ -173,4 +191,4 @@ def compare_articles(news_data, sentiment_counts):
|
|
| 173 |
}
|
| 174 |
},
|
| 175 |
"Final Sentiment Analysis": final_sentiment
|
| 176 |
-
}
|
|
|
|
| 1 |
+
# Importing libraries
|
| 2 |
from bs4 import BeautifulSoup
|
| 3 |
import requests
|
| 4 |
from langchain.schema import HumanMessage
|
|
|
|
| 8 |
import os
|
| 9 |
from transformers import pipeline
|
| 10 |
|
| 11 |
+
# Load environment variables
|
| 12 |
load_dotenv()
|
| 13 |
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
| 14 |
|
| 15 |
+
# Initialize the LLM model
|
| 16 |
+
llm = ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-8b-instant")
|
| 17 |
|
| 18 |
+
# Function to extract news titles and summaries from Economic Times
|
| 19 |
def extract_titles_and_summaries(company_name, num_articles=10):
|
| 20 |
url = f"https://economictimes.indiatimes.com/topic/{company_name}/news"
|
| 21 |
try:
|
|
|
|
| 52 |
print(f"An error occurred: {e}")
|
| 53 |
return []
|
| 54 |
|
| 55 |
+
# Function to perform sentiment analysis on extracted news articles
|
| 56 |
def perform_sentiment_analysis(news_data):
|
| 57 |
from transformers import pipeline
|
| 58 |
articles = news_data.get("Articles", [])
|
| 59 |
+
pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis", device=1)
|
| 60 |
sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
|
| 61 |
|
| 62 |
for article in articles:
|
|
|
|
| 82 |
|
| 83 |
return news_data, sentiment_counts
|
| 84 |
|
| 85 |
+
# Function to extract topics from articles using Hugging Face model
|
| 86 |
def extract_topics_with_hf(news_data):
|
| 87 |
structured_data = {
|
| 88 |
"Company": news_data.get("Company", "Unknown"),
|
| 89 |
"Articles": []
|
| 90 |
}
|
| 91 |
+
topic_pipe = pipeline("text-classification", model="valurank/distilroberta-topic-classification", device=1)
|
| 92 |
articles = news_data.get("Articles", [])
|
| 93 |
+
|
| 94 |
for article in articles:
|
| 95 |
content = f"{article['Title']} {article['Summary']}"
|
| 96 |
topics_result = topic_pipe(content, top_k=3)
|
|
|
|
| 105 |
})
|
| 106 |
return structured_data
|
| 107 |
|
| 108 |
+
# Function to generate a final sentiment summary using LLM
|
| 109 |
def generate_final_sentiment(news_data, sentiment_counts):
|
| 110 |
company_name = news_data["Company"]
|
| 111 |
total_articles = sum(sentiment_counts.values())
|
| 112 |
combined_summaries = " ".join([article["Summary"] for article in news_data["Articles"]])
|
| 113 |
+
|
| 114 |
prompt = f"""
|
| 115 |
Based on the analysis of {total_articles} articles about the company "{company_name}":
|
| 116 |
- Positive articles: {sentiment_counts['Positive']}
|
|
|
|
| 118 |
- Neutral articles: {sentiment_counts['Neutral']}
|
| 119 |
The following are the summarized key points from the articles: "{combined_summaries}".
|
| 120 |
Provide a single, concise summary that integrates the overall sentiment analysis and key news highlights while maintaining a natural flow. Explain its implications for the company's reputation, stock potential, and public perception.
|
| 121 |
+
Respond **ONLY** with a well-structured very concise and short paragraph in plain text, focusing on overall sentiment.
|
| 122 |
"""
|
| 123 |
+
|
| 124 |
+
response = llm.invoke([HumanMessage(content=prompt)], max_tokens=200)
|
| 125 |
final_sentiment = response if response else "Sentiment analysis summary not available."
|
| 126 |
+
return final_sentiment.content # returns a string
|
| 127 |
|
| 128 |
+
# Function to extract JSON response from LLM output
|
| 129 |
def extract_json(response):
|
| 130 |
try:
|
| 131 |
return json.loads(response)
|
| 132 |
except json.JSONDecodeError:
|
| 133 |
return {}
|
| 134 |
+
|
| 135 |
+
# Function to compare articles based on common topics and sentiment variations
|
| 136 |
def compare_articles(news_data, sentiment_counts):
|
| 137 |
articles = news_data.get("Articles", [])
|
| 138 |
all_topics = [set(article["Topics"]) for article in articles]
|
| 139 |
common_topics = set.intersection(*all_topics) if all_topics else set()
|
| 140 |
+
|
| 141 |
topics_prompt = f"""
|
| 142 |
Analyze the following article topics and identify **only three** key themes that are common across multiple articles,
|
| 143 |
even if they are phrased differently. The topics from each article are:
|
|
|
|
| 146 |
Respond **ONLY** with a JSON format:
|
| 147 |
{{"CommonTopics": ["topic1", "topic2", "topic3"]}}
|
| 148 |
"""
|
| 149 |
+
|
| 150 |
response = llm.invoke([HumanMessage(content=topics_prompt)]).content
|
| 151 |
contextual_common_topics = extract_json(response).get("CommonTopics", list(common_topics))[:3] # Limit to 3 topics
|
| 152 |
|
| 153 |
total_articles = sum(sentiment_counts.values())
|
| 154 |
+
|
| 155 |
comparison_prompt = f"""
|
| 156 |
Provide a high-level summary comparing {total_articles} news articles about "{news_data['Company']}":
|
| 157 |
- Sentiment distribution: {sentiment_counts}
|
|
|
|
| 170 |
]
|
| 171 |
}}
|
| 172 |
"""
|
| 173 |
+
|
| 174 |
response = llm.invoke([HumanMessage(content=comparison_prompt)]).content
|
| 175 |
coverage_differences = extract_json(response).get("Coverage Differences", [])
|
| 176 |
+
|
| 177 |
final_sentiment = generate_final_sentiment(news_data, sentiment_counts)
|
| 178 |
+
|
| 179 |
return {
|
| 180 |
"Company": news_data["Company"],
|
| 181 |
"Articles": articles,
|
|
|
|
| 191 |
}
|
| 192 |
},
|
| 193 |
"Final Sentiment Analysis": final_sentiment
|
| 194 |
+
}
|