import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "key-life/codegen-alpaca-1b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") def generate_code(prompt): formatted_prompt = f"### Instruction:\n{prompt}\n\n### Response:\n" inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=256) return tokenizer.decode(outputs[0], skip_special_tokens=True) interface = gr.Interface( fn=generate_code, inputs=gr.Textbox(lines=5, label="Instruction"), outputs=gr.Code(label="Generated Code"), title="CodeGen Alpaca 1B", description="Give a coding instruction and get code as response from a fine-tuned StarCoderBase-1B model." ) interface.launch()