Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| from huggingface_hub import hf_hub_download | |
| import joblib | |
| # Download and load the trained model | |
| model_path = hf_hub_download(repo_id="lcsekar/tourism-project-model", filename="best_model_v1.joblib") | |
| model = joblib.load(model_path) | |
| # Streamlit UI | |
| st.title("Visit with Us - Purchase Prediction App") | |
| st.write(""" | |
| This application predicts whether the user will buy a tourism package from Visit with Us | |
| based on user details such as age, occupation, gender, marital status and income. | |
| Please enter the app details below to get the prediction. | |
| """) | |
| # User input | |
| # create two columns for better layout | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| customer_id = st.number_input("Customer ID", min_value=1) | |
| age = st.number_input("Age", min_value=18, max_value=100, value=30) | |
| type_of_contact = st.selectbox("Type of Contact", ["Self Enquiry", "Company Invited"]) | |
| city_tier = st.selectbox("City Tier", [1, 2, 3]) | |
| occupation = st.selectbox("Occupation", ["Salaried", "Free Lancer", "Small Business", "Large Business"]) | |
| gender = st.selectbox("Gender", ["Male", "Female"]) | |
| num_person_visiting = st.number_input("Number of Persons Visiting", min_value=1, max_value=20, value=2) | |
| preferred_property_star = st.selectbox("Preferred Property Star", [3, 4, 5]) | |
| marital_status = st.selectbox("Marital Status", ["Single", "Divorced", "Married", "Unmarried"]) | |
| num_trips = st.number_input("Number of Trips", min_value=0, max_value=50, value=5) | |
| with col2: | |
| passport = st.selectbox("Passport", ["Yes", "No"]) | |
| own_car = st.selectbox("Own Car", ["Yes", "No"]) | |
| num_children_visiting = st.number_input("Number of Children Visiting", min_value=0, max_value=10, value=0) | |
| designation = st.selectbox("Designation", ["Executive", "Manager", "Senior Manager", "AVP", "VP"]) | |
| monthly_income = st.number_input("Monthly Income (USD)", min_value=1000, max_value=100000, value=5000) | |
| pitch_satisfaction_score = st.selectbox("Pitch Satisfaction Score", [1, 2, 3, 4, 5]) | |
| product_pitched = st.selectbox("Product Pitched", ["Super Deluxe", "Deluxe", "Standard", "Basic", "King"]) | |
| num_followups = st.number_input("Number of Followups", min_value=0, max_value=20, value=2) | |
| duration_of_pitch = st.number_input("Duration of Pitch (minutes)", min_value=1, max_value=120, value=30) | |
| # Assemble input into DataFrame | |
| input_data = pd.DataFrame([{ | |
| 'Age': age, | |
| 'TypeofContact': type_of_contact, | |
| 'CityTier': city_tier, | |
| 'Occupation': occupation, | |
| 'Gender': gender, | |
| 'NumberOfPersonVisiting': num_person_visiting, | |
| 'PreferredPropertyStar': preferred_property_star, | |
| 'MaritalStatus': marital_status, | |
| 'NumberOfTrips': num_trips, | |
| 'Passport': 1 if passport == "Yes" else 0, | |
| 'OwnCar': 1 if own_car == "Yes" else 0, | |
| 'NumberOfChildrenVisiting': num_children_visiting, | |
| 'Designation': designation, | |
| 'MonthlyIncome': monthly_income, | |
| 'PitchSatisfactionScore': pitch_satisfaction_score, | |
| 'ProductPitched': product_pitched, | |
| 'NumberOfFollowups': num_followups, | |
| 'DurationOfPitch': duration_of_pitch | |
| }]) | |
| print(input_data) | |
| # Predict button | |
| if st.button("Predict"): | |
| prediction = model.predict(input_data)[0] | |
| print(f"Prediction: {prediction}") | |
| st.subheader("Prediction Result:") | |
| st.success(f"The customer is {'likely' if prediction == 1 else 'not likely'} to purchase the tourism package.") | |