lcsekar commited on
Commit
fba8802
·
verified ·
1 Parent(s): 675c1ea

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +14 -4
app.py CHANGED
@@ -3,9 +3,19 @@ import pandas as pd
3
  from huggingface_hub import hf_hub_download
4
  import joblib
5
 
 
 
 
 
 
 
6
  # Download and load the trained model
7
- model_path = hf_hub_download(repo_id="lcsekar/tourism-project-model", filename="best_model_v1.joblib")
8
- model = joblib.load(model_path)
 
 
 
 
9
 
10
  # Streamlit UI
11
  st.title("Visit with Us - Purchase Prediction App")
@@ -63,11 +73,11 @@ input_data = pd.DataFrame([{
63
  'NumberOfFollowups': num_followups,
64
  'DurationOfPitch': duration_of_pitch
65
  }])
66
- print(input_data)
67
 
68
  # Predict button
69
  if st.button("Predict"):
70
  prediction = model.predict(input_data)[0]
71
- print(f"Prediction: {prediction}")
72
  st.subheader("Prediction Result:")
73
  st.success(f"The customer is {'likely' if prediction == 1 else 'not likely'} to purchase the tourism package.")
 
3
  from huggingface_hub import hf_hub_download
4
  import joblib
5
 
6
+ # for logging
7
+ import logging
8
+
9
+ logging.basicConfig(level=logging.INFO)
10
+ logger = logging.getLogger(__name__)
11
+
12
  # Download and load the trained model
13
+ @st.cache_resource
14
+ def load_model():
15
+ model_path = hf_hub_download(repo_id="lcsekar/tourism-project-model", filename="best_model_v1.joblib")
16
+ return joblib.load(model_path)
17
+
18
+ model = load_model()
19
 
20
  # Streamlit UI
21
  st.title("Visit with Us - Purchase Prediction App")
 
73
  'NumberOfFollowups': num_followups,
74
  'DurationOfPitch': duration_of_pitch
75
  }])
76
+ logger.info(input_data)
77
 
78
  # Predict button
79
  if st.button("Predict"):
80
  prediction = model.predict(input_data)[0]
81
+ logger.info(f"Prediction: {prediction}")
82
  st.subheader("Prediction Result:")
83
  st.success(f"The customer is {'likely' if prediction == 1 else 'not likely'} to purchase the tourism package.")