yangzhitao commited on
Commit
60906bd
·
1 Parent(s): fe8ec74

chores: update configurations

Browse files
.env.example CHANGED
@@ -1 +1,2 @@
1
  HF_TOKEN=changethis
 
 
1
  HF_TOKEN=changethis
2
+ HF_HOME=.
.vscode/cspell.json CHANGED
@@ -1,6 +1,8 @@
1
  {
2
  "words": [
 
3
  "changethis",
 
4
  "initialisation",
5
  "modelcard",
6
  "sentencepiece"
 
1
  {
2
  "words": [
3
+ "accs",
4
  "changethis",
5
+ "evals",
6
  "initialisation",
7
  "modelcard",
8
  "sentencepiece"
app.py CHANGED
@@ -1,7 +1,9 @@
1
  import gradio as gr
 
2
  from apscheduler.schedulers.background import BackgroundScheduler
3
  from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
4
  from huggingface_hub import snapshot_download
 
5
 
6
  from src.about import (
7
  CITATION_BUTTON_LABEL,
@@ -31,10 +33,10 @@ from src.submission.submit import add_new_eval
31
  def restart_space():
32
  API.restart_space(repo_id=settings.REPO_ID)
33
 
 
34
 
35
  # Space initialisation
36
  try:
37
- print(settings.EVAL_REQUESTS_PATH)
38
  snapshot_download(
39
  repo_id=settings.QUEUE_REPO,
40
  local_dir=settings.EVAL_REQUESTS_PATH,
@@ -46,7 +48,6 @@ try:
46
  except Exception:
47
  restart_space()
48
  try:
49
- print(settings.EVAL_RESULTS_PATH)
50
  snapshot_download(
51
  repo_id=settings.RESULTS_REPO,
52
  local_dir=settings.EVAL_RESULTS_PATH,
@@ -73,7 +74,7 @@ LEADERBOARD_DF = get_leaderboard_df(
73
  ) = get_evaluation_queue_df(settings.EVAL_REQUESTS_PATH, EVAL_COLS)
74
 
75
 
76
- def init_leaderboard(dataframe):
77
  if dataframe is None or dataframe.empty:
78
  raise ValueError("Leaderboard DataFrame is empty or None.")
79
  return Leaderboard(
 
1
  import gradio as gr
2
+ import pandas as pd
3
  from apscheduler.schedulers.background import BackgroundScheduler
4
  from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
5
  from huggingface_hub import snapshot_download
6
+ from rich import print
7
 
8
  from src.about import (
9
  CITATION_BUTTON_LABEL,
 
33
  def restart_space():
34
  API.restart_space(repo_id=settings.REPO_ID)
35
 
36
+ print("///// --- Settings --- /////", settings.model_dump())
37
 
38
  # Space initialisation
39
  try:
 
40
  snapshot_download(
41
  repo_id=settings.QUEUE_REPO,
42
  local_dir=settings.EVAL_REQUESTS_PATH,
 
48
  except Exception:
49
  restart_space()
50
  try:
 
51
  snapshot_download(
52
  repo_id=settings.RESULTS_REPO,
53
  local_dir=settings.EVAL_RESULTS_PATH,
 
74
  ) = get_evaluation_queue_df(settings.EVAL_REQUESTS_PATH, EVAL_COLS)
75
 
76
 
77
+ def init_leaderboard(dataframe: pd.DataFrame) -> Leaderboard:
78
  if dataframe is None or dataframe.empty:
79
  raise ValueError("Leaderboard DataFrame is empty or None.")
80
  return Leaderboard(
pyproject.toml CHANGED
@@ -22,7 +22,9 @@ dependencies = [
22
  "tokenizers>=0.15.0",
23
  "sentencepiece",
24
  "python-dotenv>=1.2.1",
 
25
  "pydantic-settings>=2.11.0",
 
26
  ]
27
 
28
  [dependency-groups]
 
22
  "tokenizers>=0.15.0",
23
  "sentencepiece",
24
  "python-dotenv>=1.2.1",
25
+ "pydantic>=2.11.10",
26
  "pydantic-settings>=2.11.0",
27
+ "rich>=14.2.0",
28
  ]
29
 
30
  [dependency-groups]
src/envs.py CHANGED
@@ -19,7 +19,7 @@ class Settings(BaseSettings):
19
  # Change to your org - don't forget to create a results and request dataset, with the correct format!
20
  OWNER: Annotated[
21
  str,
22
- Field("y-playground-backend"),
23
  ]
24
 
25
  @computed_field
 
19
  # Change to your org - don't forget to create a results and request dataset, with the correct format!
20
  OWNER: Annotated[
21
  str,
22
+ Field("y-playground"),
23
  ]
24
 
25
  @computed_field
src/leaderboard/read_evals.py CHANGED
@@ -2,9 +2,11 @@ import glob
2
  import json
3
  import os
4
  from dataclasses import dataclass
 
5
 
6
  import dateutil
7
  import numpy as np
 
8
 
9
  from src.display.formatting import make_clickable_model
10
  from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
@@ -32,7 +34,7 @@ class EvalResult:
32
  still_on_hub: bool = False
33
 
34
  @classmethod
35
- def init_from_json_file(self, json_filepath):
36
  """Inits the result from the specific model result file"""
37
  with open(json_filepath) as fp:
38
  data = json.load(fp)
@@ -78,7 +80,7 @@ class EvalResult:
78
  mean_acc = np.mean(accs) * 100.0
79
  results[task.benchmark] = mean_acc
80
 
81
- return self(
82
  eval_name=result_key,
83
  full_model=full_model,
84
  org=org,
@@ -90,25 +92,25 @@ class EvalResult:
90
  architecture=architecture,
91
  )
92
 
93
- def update_with_request_file(self, requests_path):
94
  """Finds the relevant request file for the current model and updates info with it"""
95
  request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
96
 
97
  try:
98
  with open(request_file) as f:
99
- request = json.load(f)
100
  self.model_type = ModelType.from_str(request.get("model_type", ""))
101
  self.weight_type = WeightType[request.get("weight_type", "Original")]
102
  self.license = request.get("license", "?")
103
  self.likes = request.get("likes", 0)
104
  self.num_params = request.get("params", 0)
105
  self.date = request.get("submitted_time", "")
106
- except Exception:
107
  print(
108
- f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
109
  )
110
 
111
- def to_dict(self):
112
  """Converts the Eval Result to a dict compatible with our dataframe display"""
113
  average = sum(v for v in self.results.values() if v is not None) / len(Tasks)
114
  data_dict = {
@@ -154,7 +156,7 @@ def get_request_file_for_model(requests_path, model_name, precision):
154
 
155
  def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
156
  """From the path of the results folder root, extract all needed info for results"""
157
- model_result_filepaths = []
158
 
159
  for root, _, files in os.walk(results_path):
160
  # We should only have json files in model results
@@ -170,7 +172,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
170
  for file in files:
171
  model_result_filepaths.append(os.path.join(root, file))
172
 
173
- eval_results = {}
174
  for model_result_filepath in model_result_filepaths:
175
  # Creation of result
176
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
@@ -183,7 +185,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
183
  else:
184
  eval_results[eval_name] = eval_result
185
 
186
- results = []
187
  for v in eval_results.values():
188
  try:
189
  v.to_dict() # we test if the dict version is complete
 
2
  import json
3
  import os
4
  from dataclasses import dataclass
5
+ from typing import Any
6
 
7
  import dateutil
8
  import numpy as np
9
+ from typing_extensions import Self
10
 
11
  from src.display.formatting import make_clickable_model
12
  from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
 
34
  still_on_hub: bool = False
35
 
36
  @classmethod
37
+ def init_from_json_file(cls, json_filepath: str) -> Self:
38
  """Inits the result from the specific model result file"""
39
  with open(json_filepath) as fp:
40
  data = json.load(fp)
 
80
  mean_acc = np.mean(accs) * 100.0
81
  results[task.benchmark] = mean_acc
82
 
83
+ return cls(
84
  eval_name=result_key,
85
  full_model=full_model,
86
  org=org,
 
92
  architecture=architecture,
93
  )
94
 
95
+ def update_with_request_file(self, requests_path: str) -> None:
96
  """Finds the relevant request file for the current model and updates info with it"""
97
  request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
98
 
99
  try:
100
  with open(request_file) as f:
101
+ request: dict[str, Any] = json.load(f)
102
  self.model_type = ModelType.from_str(request.get("model_type", ""))
103
  self.weight_type = WeightType[request.get("weight_type", "Original")]
104
  self.license = request.get("license", "?")
105
  self.likes = request.get("likes", 0)
106
  self.num_params = request.get("params", 0)
107
  self.date = request.get("submitted_time", "")
108
+ except Exception as e:
109
  print(
110
+ f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}. Error: {e}"
111
  )
112
 
113
+ def to_dict(self) -> dict:
114
  """Converts the Eval Result to a dict compatible with our dataframe display"""
115
  average = sum(v for v in self.results.values() if v is not None) / len(Tasks)
116
  data_dict = {
 
156
 
157
  def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
  """From the path of the results folder root, extract all needed info for results"""
159
+ model_result_filepaths: list[str] = []
160
 
161
  for root, _, files in os.walk(results_path):
162
  # We should only have json files in model results
 
172
  for file in files:
173
  model_result_filepaths.append(os.path.join(root, file))
174
 
175
+ eval_results: dict[str, EvalResult] = {}
176
  for model_result_filepath in model_result_filepaths:
177
  # Creation of result
178
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
 
185
  else:
186
  eval_results[eval_name] = eval_result
187
 
188
+ results: list[EvalResult] = []
189
  for v in eval_results.values():
190
  try:
191
  v.to_dict() # we test if the dict version is complete
src/leaderboard/read_evals_orig.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import json
3
+ import os
4
+ from dataclasses import dataclass
5
+
6
+ import dateutil
7
+ import numpy as np
8
+
9
+ from src.display.formatting import make_clickable_model
10
+ from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
11
+ from src.submission.check_validity import is_model_on_hub
12
+
13
+
14
+ @dataclass
15
+ class EvalResult:
16
+ """Represents one full evaluation. Built from a combination of the result and request file for a given run."""
17
+
18
+ eval_name: str # org_model_precision (uid)
19
+ full_model: str # org/model (path on hub)
20
+ org: str
21
+ model: str
22
+ revision: str # commit hash, "" if main
23
+ results: dict
24
+ precision: Precision = Precision.Unknown
25
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
26
+ weight_type: WeightType = WeightType.Original # Original or Adapter
27
+ architecture: str = "Unknown"
28
+ license: str = "?"
29
+ likes: int = 0
30
+ num_params: int = 0
31
+ date: str = "" # submission date of request file
32
+ still_on_hub: bool = False
33
+
34
+ @classmethod
35
+ def init_from_json_file(self, json_filepath):
36
+ """Inits the result from the specific model result file"""
37
+ with open(json_filepath) as fp:
38
+ data = json.load(fp)
39
+
40
+ config = data.get("config")
41
+
42
+ # Precision
43
+ precision = Precision.from_str(config.get("model_dtype"))
44
+
45
+ # Get model and org
46
+ org_and_model = config.get("model_name", config.get("model_args", None))
47
+ org_and_model = org_and_model.split("/", 1)
48
+
49
+ if len(org_and_model) == 1:
50
+ org = None
51
+ model = org_and_model[0]
52
+ result_key = f"{model}_{precision.value.name}"
53
+ else:
54
+ org = org_and_model[0]
55
+ model = org_and_model[1]
56
+ result_key = f"{org}_{model}_{precision.value.name}"
57
+ full_model = "/".join(org_and_model)
58
+
59
+ still_on_hub, _, model_config = is_model_on_hub(
60
+ full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
61
+ )
62
+ architecture = "?"
63
+ if model_config is not None:
64
+ architectures = getattr(model_config, "architectures", None)
65
+ if architectures:
66
+ architecture = ";".join(architectures)
67
+
68
+ # Extract results available in this file (some results are split in several files)
69
+ results = {}
70
+ for task in Tasks:
71
+ task = task.value
72
+
73
+ # We average all scores of a given metric (not all metrics are present in all files)
74
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
75
+ if accs.size == 0 or any(acc is None for acc in accs):
76
+ continue
77
+
78
+ mean_acc = np.mean(accs) * 100.0
79
+ results[task.benchmark] = mean_acc
80
+
81
+ return self(
82
+ eval_name=result_key,
83
+ full_model=full_model,
84
+ org=org,
85
+ model=model,
86
+ results=results,
87
+ precision=precision,
88
+ revision=config.get("model_sha", ""),
89
+ still_on_hub=still_on_hub,
90
+ architecture=architecture,
91
+ )
92
+
93
+ def update_with_request_file(self, requests_path):
94
+ """Finds the relevant request file for the current model and updates info with it"""
95
+ request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
96
+
97
+ try:
98
+ with open(request_file) as f:
99
+ request = json.load(f)
100
+ self.model_type = ModelType.from_str(request.get("model_type", ""))
101
+ self.weight_type = WeightType[request.get("weight_type", "Original")]
102
+ self.license = request.get("license", "?")
103
+ self.likes = request.get("likes", 0)
104
+ self.num_params = request.get("params", 0)
105
+ self.date = request.get("submitted_time", "")
106
+ except Exception:
107
+ print(
108
+ f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
109
+ )
110
+
111
+ def to_dict(self):
112
+ """Converts the Eval Result to a dict compatible with our dataframe display"""
113
+ average = sum(v for v in self.results.values() if v is not None) / len(Tasks)
114
+ data_dict = {
115
+ "eval_name": self.eval_name, # not a column, just a save name,
116
+ AutoEvalColumn.precision.name: self.precision.value.name,
117
+ AutoEvalColumn.model_type.name: self.model_type.value.name,
118
+ AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
119
+ AutoEvalColumn.weight_type.name: self.weight_type.value.name,
120
+ AutoEvalColumn.architecture.name: self.architecture,
121
+ AutoEvalColumn.model.name: make_clickable_model(self.full_model),
122
+ AutoEvalColumn.revision.name: self.revision,
123
+ AutoEvalColumn.average.name: average,
124
+ AutoEvalColumn.license.name: self.license,
125
+ AutoEvalColumn.likes.name: self.likes,
126
+ AutoEvalColumn.params.name: self.num_params,
127
+ AutoEvalColumn.still_on_hub.name: self.still_on_hub,
128
+ }
129
+
130
+ for task in Tasks:
131
+ data_dict[task.value.col_name] = self.results[task.value.benchmark]
132
+
133
+ return data_dict
134
+
135
+
136
+ def get_request_file_for_model(requests_path, model_name, precision):
137
+ """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
138
+ request_files = os.path.join(
139
+ requests_path,
140
+ f"{model_name}_eval_request_*.json",
141
+ )
142
+ request_files = glob.glob(request_files)
143
+
144
+ # Select correct request file (precision)
145
+ request_file = ""
146
+ request_files = sorted(request_files, reverse=True)
147
+ for tmp_request_file in request_files:
148
+ with open(tmp_request_file) as f:
149
+ req_content = json.load(f)
150
+ if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
151
+ request_file = tmp_request_file
152
+ return request_file
153
+
154
+
155
+ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
156
+ """From the path of the results folder root, extract all needed info for results"""
157
+ model_result_filepaths = []
158
+
159
+ for root, _, files in os.walk(results_path):
160
+ # We should only have json files in model results
161
+ if len(files) == 0 or any(not f.endswith(".json") for f in files):
162
+ continue
163
+
164
+ # Sort the files by date
165
+ try:
166
+ files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
167
+ except dateutil.parser._parser.ParserError:
168
+ files = [files[-1]]
169
+
170
+ for file in files:
171
+ model_result_filepaths.append(os.path.join(root, file))
172
+
173
+ eval_results = {}
174
+ for model_result_filepath in model_result_filepaths:
175
+ # Creation of result
176
+ eval_result = EvalResult.init_from_json_file(model_result_filepath)
177
+ eval_result.update_with_request_file(requests_path)
178
+
179
+ # Store results of same eval together
180
+ eval_name = eval_result.eval_name
181
+ if eval_name in eval_results.keys():
182
+ eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
183
+ else:
184
+ eval_results[eval_name] = eval_result
185
+
186
+ results = []
187
+ for v in eval_results.values():
188
+ try:
189
+ v.to_dict() # we test if the dict version is complete
190
+ results.append(v)
191
+ except KeyError: # not all eval values present
192
+ continue
193
+
194
+ return results
src/populate.py CHANGED
@@ -1,3 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import json
2
  import os
3
 
@@ -9,7 +24,29 @@ from src.leaderboard.read_evals import get_raw_eval_results
9
 
10
 
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- """Creates a dataframe from all the individual experiment results"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
@@ -23,7 +60,33 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
23
 
24
 
25
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
  all_evals = []
29
 
 
1
+ """
2
+ Data population utilities for leaderboard and evaluation queue management.
3
+
4
+ This module provides functions to create and populate pandas DataFrames from evaluation
5
+ results and submission data. It handles data processing for both the main leaderboard
6
+ display and the evaluation queue status tracking.
7
+
8
+ Key Functions:
9
+ get_leaderboard_df: Creates a sorted leaderboard DataFrame from evaluation results
10
+ get_evaluation_queue_df: Creates separate DataFrames for different evaluation statuses
11
+
12
+ The module processes JSON files containing evaluation results and submission metadata,
13
+ applies formatting transformations, and filters data based on completion status.
14
+ """
15
+
16
  import json
17
  import os
18
 
 
24
 
25
 
26
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
27
+ """
28
+ Creates a sorted leaderboard DataFrame from evaluation results.
29
+
30
+ This function processes raw evaluation data from JSON files and creates a pandas
31
+ DataFrame suitable for leaderboard display. The resulting DataFrame is sorted by
32
+ average performance scores in descending order and filtered to exclude incomplete
33
+ evaluations.
34
+
35
+ Args:
36
+ results_path (str): Path to the directory containing evaluation result files
37
+ requests_path (str): Path to the directory containing evaluation request files
38
+ cols (list): List of column names to include in the final DataFrame
39
+ benchmark_cols (list): List of benchmark column names used for filtering
40
+
41
+ Returns:
42
+ pd.DataFrame: A sorted and filtered DataFrame containing leaderboard data.
43
+ Rows are sorted by average score (descending) and filtered to
44
+ exclude entries with missing benchmark results.
45
+
46
+ Note:
47
+ The function automatically rounds numeric values to 2 decimal places and
48
+ filters out any entries that have NaN values in the specified benchmark columns.
49
+ """
50
  raw_data = get_raw_eval_results(results_path, requests_path)
51
  all_data_json = [v.to_dict() for v in raw_data]
52
 
 
60
 
61
 
62
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
63
+ """
64
+ Creates separate DataFrames for different evaluation queue statuses.
65
+
66
+ This function scans a directory for evaluation submission files (both individual
67
+ JSON files and files within subdirectories) and categorizes them by their status.
68
+ It returns three separate DataFrames: finished, running, and pending evaluations.
69
+
70
+ Args:
71
+ save_path (str): Path to the directory containing evaluation submission files
72
+ cols (list): List of column names to include in the final DataFrames
73
+
74
+ Returns:
75
+ list[pd.DataFrame]: A list containing three DataFrames in order:
76
+ 1. df_finished: Evaluations with status "FINISHED*" or "PENDING_NEW_EVAL"
77
+ 2. df_running: Evaluations with status "RUNNING"
78
+ 3. df_pending: Evaluations with status "PENDING" or "RERUN"
79
+
80
+ Note:
81
+ The function processes both individual JSON files and JSON files within
82
+ subdirectories (excluding markdown files). Model names are automatically
83
+ converted to clickable links, and revision defaults to "main" if not specified.
84
+
85
+ Status categorization:
86
+ - FINISHED: Any status starting with "FINISHED" or "PENDING_NEW_EVAL"
87
+ - RUNNING: Status equals "RUNNING"
88
+ - PENDING: Status equals "PENDING" or "RERUN"
89
+ """
90
  entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
91
  all_evals = []
92
 
src/submission/submit.py CHANGED
@@ -59,7 +59,9 @@ def add_new_eval(
59
  return styled_error(f'Base model "{base_model}" {error}')
60
 
61
  if not weight_type == "Adapter":
62
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=settings.TOKEN, test_tokenizer=True)
 
 
63
  if not model_on_hub:
64
  return styled_error(f'Model "{model}" {error}')
65
 
 
59
  return styled_error(f'Base model "{base_model}" {error}')
60
 
61
  if not weight_type == "Adapter":
62
+ model_on_hub, error, _ = is_model_on_hub(
63
+ model_name=model, revision=revision, token=settings.TOKEN, test_tokenizer=True
64
+ )
65
  if not model_on_hub:
66
  return styled_error(f'Model "{model}" {error}')
67
 
uv.lock CHANGED
@@ -681,9 +681,11 @@ dependencies = [
681
  { name = "matplotlib" },
682
  { name = "numpy" },
683
  { name = "pandas" },
 
684
  { name = "pydantic-settings" },
685
  { name = "python-dateutil" },
686
  { name = "python-dotenv" },
 
687
  { name = "sentencepiece" },
688
  { name = "tokenizers" },
689
  { name = "tqdm" },
@@ -707,9 +709,11 @@ requires-dist = [
707
  { name = "matplotlib" },
708
  { name = "numpy" },
709
  { name = "pandas" },
 
710
  { name = "pydantic-settings", specifier = ">=2.11.0" },
711
  { name = "python-dateutil" },
712
  { name = "python-dotenv", specifier = ">=1.2.1" },
 
713
  { name = "sentencepiece" },
714
  { name = "tokenizers", specifier = ">=0.15.0" },
715
  { name = "tqdm" },
 
681
  { name = "matplotlib" },
682
  { name = "numpy" },
683
  { name = "pandas" },
684
+ { name = "pydantic" },
685
  { name = "pydantic-settings" },
686
  { name = "python-dateutil" },
687
  { name = "python-dotenv" },
688
+ { name = "rich" },
689
  { name = "sentencepiece" },
690
  { name = "tokenizers" },
691
  { name = "tqdm" },
 
709
  { name = "matplotlib" },
710
  { name = "numpy" },
711
  { name = "pandas" },
712
+ { name = "pydantic", specifier = ">=2.11.10" },
713
  { name = "pydantic-settings", specifier = ">=2.11.0" },
714
  { name = "python-dateutil" },
715
  { name = "python-dotenv", specifier = ">=1.2.1" },
716
+ { name = "rich", specifier = ">=14.2.0" },
717
  { name = "sentencepiece" },
718
  { name = "tokenizers", specifier = ">=0.15.0" },
719
  { name = "tqdm" },