Spaces:
Running
Running
yangzhitao
commited on
Commit
·
d66a6a3
1
Parent(s):
60906bd
refactor: enhance leaderboard functionality and improve code structure
Browse files- Introduced Pydantic models for better data validation in leaderboard evaluations.
- Refactored leaderboard DataFrame initialization for improved readability and maintainability.
- Updated Gradio components to use the new structure.
- Added new dependencies for enhanced functionality.
- Removed deprecated read_evals_orig.py file to streamline the codebase.
- .vscode/cspell.json +1 -0
- .vscode/settings.json +2 -1
- app.py +35 -22
- pyproject.toml +1 -0
- src/about.py +37 -8
- src/display/css_html_js.py +1 -0
- src/display/formatting.py +15 -9
- src/display/utils.py +101 -51
- src/envs.py +8 -1
- src/leaderboard/read_evals.py +58 -35
- src/leaderboard/read_evals_orig.py +0 -194
- src/populate.py +10 -5
- src/submission/check_validity.py +16 -4
- uv.lock +11 -0
.vscode/cspell.json
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
"words": [
|
| 3 |
"accs",
|
| 4 |
"changethis",
|
|
|
|
| 5 |
"evals",
|
| 6 |
"initialisation",
|
| 7 |
"modelcard",
|
|
|
|
| 2 |
"words": [
|
| 3 |
"accs",
|
| 4 |
"changethis",
|
| 5 |
+
"checkboxgroup",
|
| 6 |
"evals",
|
| 7 |
"initialisation",
|
| 8 |
"modelcard",
|
.vscode/settings.json
CHANGED
|
@@ -7,5 +7,6 @@
|
|
| 7 |
"source.fixAll.ruff": "always",
|
| 8 |
"source.organizeImports.ruff": "always"
|
| 9 |
}
|
| 10 |
-
}
|
|
|
|
| 11 |
}
|
|
|
|
| 7 |
"source.fixAll.ruff": "always",
|
| 8 |
"source.organizeImports.ruff": "always"
|
| 9 |
}
|
| 10 |
+
},
|
| 11 |
+
"cursorpyright.analysis.typeCheckingMode": "basic"
|
| 12 |
}
|
app.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 4 |
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
from rich import print
|
|
|
|
| 7 |
|
| 8 |
from src.about import (
|
| 9 |
CITATION_BUTTON_LABEL,
|
|
@@ -33,6 +35,7 @@ from src.submission.submit import add_new_eval
|
|
| 33 |
def restart_space():
|
| 34 |
API.restart_space(repo_id=settings.REPO_ID)
|
| 35 |
|
|
|
|
| 36 |
print("///// --- Settings --- /////", settings.model_dump())
|
| 37 |
|
| 38 |
# Space initialisation
|
|
@@ -77,28 +80,38 @@ LEADERBOARD_DF = get_leaderboard_df(
|
|
| 77 |
def init_leaderboard(dataframe: pd.DataFrame) -> Leaderboard:
|
| 78 |
if dataframe is None or dataframe.empty:
|
| 79 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
return Leaderboard(
|
| 81 |
value=dataframe,
|
| 82 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
| 83 |
-
select_columns=
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
),
|
| 88 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 89 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
| 90 |
-
filter_columns=[
|
| 91 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
| 92 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 93 |
-
ColumnFilter(
|
| 94 |
-
AutoEvalColumn.params.name,
|
| 95 |
-
type="slider",
|
| 96 |
-
min=0.01,
|
| 97 |
-
max=150,
|
| 98 |
-
label="Select the number of parameters (B)",
|
| 99 |
-
),
|
| 100 |
-
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
| 101 |
-
],
|
| 102 |
bool_checkboxgroup_label="Hide models",
|
| 103 |
interactive=False,
|
| 104 |
)
|
|
@@ -127,7 +140,7 @@ with demo:
|
|
| 127 |
open=False,
|
| 128 |
):
|
| 129 |
with gr.Row():
|
| 130 |
-
finished_eval_table =
|
| 131 |
value=finished_eval_queue_df,
|
| 132 |
headers=EVAL_COLS,
|
| 133 |
datatype=EVAL_TYPES,
|
|
@@ -138,7 +151,7 @@ with demo:
|
|
| 138 |
open=False,
|
| 139 |
):
|
| 140 |
with gr.Row():
|
| 141 |
-
running_eval_table =
|
| 142 |
value=running_eval_queue_df,
|
| 143 |
headers=EVAL_COLS,
|
| 144 |
datatype=EVAL_TYPES,
|
|
@@ -150,7 +163,7 @@ with demo:
|
|
| 150 |
open=False,
|
| 151 |
):
|
| 152 |
with gr.Row():
|
| 153 |
-
pending_eval_table =
|
| 154 |
value=pending_eval_queue_df,
|
| 155 |
headers=EVAL_COLS,
|
| 156 |
datatype=EVAL_TYPES,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import gradio.components as grc
|
| 3 |
import pandas as pd
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
|
| 6 |
from huggingface_hub import snapshot_download
|
| 7 |
from rich import print
|
| 8 |
+
from rich.markdown import Markdown
|
| 9 |
|
| 10 |
from src.about import (
|
| 11 |
CITATION_BUTTON_LABEL,
|
|
|
|
| 35 |
def restart_space():
|
| 36 |
API.restart_space(repo_id=settings.REPO_ID)
|
| 37 |
|
| 38 |
+
|
| 39 |
print("///// --- Settings --- /////", settings.model_dump())
|
| 40 |
|
| 41 |
# Space initialisation
|
|
|
|
| 80 |
def init_leaderboard(dataframe: pd.DataFrame) -> Leaderboard:
|
| 81 |
if dataframe is None or dataframe.empty:
|
| 82 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 83 |
+
print("///// --- dataframe.head() --- /////", Markdown(dataframe.head().to_markdown() or "No data"))
|
| 84 |
+
selected_columns = SelectColumns(
|
| 85 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
| 86 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
| 87 |
+
label="Select Columns to Display:",
|
| 88 |
+
)
|
| 89 |
+
search_columns = [AutoEvalColumn.model.name, AutoEvalColumn.license.name]
|
| 90 |
+
hidden_columns = [c.name for c in fields(AutoEvalColumn) if c.hidden]
|
| 91 |
+
filter_columns = [
|
| 92 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
| 93 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 94 |
+
ColumnFilter(
|
| 95 |
+
AutoEvalColumn.params.name,
|
| 96 |
+
type="slider",
|
| 97 |
+
min=0.01,
|
| 98 |
+
max=150,
|
| 99 |
+
label="Select the number of parameters (B)",
|
| 100 |
+
),
|
| 101 |
+
ColumnFilter(
|
| 102 |
+
AutoEvalColumn.still_on_hub.name,
|
| 103 |
+
type="boolean", # pyright: ignore[reportArgumentType]
|
| 104 |
+
label="Deleted/incomplete",
|
| 105 |
+
default=False,
|
| 106 |
+
),
|
| 107 |
+
]
|
| 108 |
return Leaderboard(
|
| 109 |
value=dataframe,
|
| 110 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
| 111 |
+
select_columns=selected_columns,
|
| 112 |
+
search_columns=search_columns,
|
| 113 |
+
hide_columns=hidden_columns,
|
| 114 |
+
filter_columns=filter_columns, # pyright: ignore[reportArgumentType]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
bool_checkboxgroup_label="Hide models",
|
| 116 |
interactive=False,
|
| 117 |
)
|
|
|
|
| 140 |
open=False,
|
| 141 |
):
|
| 142 |
with gr.Row():
|
| 143 |
+
finished_eval_table = grc.Dataframe(
|
| 144 |
value=finished_eval_queue_df,
|
| 145 |
headers=EVAL_COLS,
|
| 146 |
datatype=EVAL_TYPES,
|
|
|
|
| 151 |
open=False,
|
| 152 |
):
|
| 153 |
with gr.Row():
|
| 154 |
+
running_eval_table = grc.Dataframe(
|
| 155 |
value=running_eval_queue_df,
|
| 156 |
headers=EVAL_COLS,
|
| 157 |
datatype=EVAL_TYPES,
|
|
|
|
| 163 |
open=False,
|
| 164 |
):
|
| 165 |
with gr.Row():
|
| 166 |
+
pending_eval_table = grc.Dataframe(
|
| 167 |
value=pending_eval_queue_df,
|
| 168 |
headers=EVAL_COLS,
|
| 169 |
datatype=EVAL_TYPES,
|
pyproject.toml
CHANGED
|
@@ -25,6 +25,7 @@ dependencies = [
|
|
| 25 |
"pydantic>=2.11.10",
|
| 26 |
"pydantic-settings>=2.11.0",
|
| 27 |
"rich>=14.2.0",
|
|
|
|
| 28 |
]
|
| 29 |
|
| 30 |
[dependency-groups]
|
|
|
|
| 25 |
"pydantic>=2.11.10",
|
| 26 |
"pydantic-settings>=2.11.0",
|
| 27 |
"rich>=14.2.0",
|
| 28 |
+
"tabulate>=0.9.0",
|
| 29 |
]
|
| 30 |
|
| 31 |
[dependency-groups]
|
src/about.py
CHANGED
|
@@ -1,20 +1,49 @@
|
|
| 1 |
-
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
|
|
|
| 3 |
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
class Task:
|
| 7 |
-
benchmark: str
|
| 8 |
-
metric: str
|
| 9 |
-
col_name: str
|
| 10 |
|
| 11 |
|
| 12 |
# Select your tasks here
|
| 13 |
# ---------------------------------------------------
|
| 14 |
class Tasks(Enum):
|
| 15 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
|
|
|
|
| 1 |
from enum import Enum
|
| 2 |
+
from typing import Annotated
|
| 3 |
|
| 4 |
+
from pydantic import BaseModel, Field
|
| 5 |
|
| 6 |
+
|
| 7 |
+
class Task(BaseModel):
|
| 8 |
+
benchmark: Annotated[str, Field(description="The benchmark name")]
|
| 9 |
+
metric: Annotated[str, Field(description="The metric name")]
|
| 10 |
+
col_name: Annotated[str, Field(description="The column name")]
|
| 11 |
|
| 12 |
|
| 13 |
# Select your tasks here
|
| 14 |
# ---------------------------------------------------
|
| 15 |
class Tasks(Enum):
|
| 16 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 17 |
+
|
| 18 |
+
# acc
|
| 19 |
+
task1_1 = Task(benchmark="MindCube", metric="acc", col_name="MindCube(acc)")
|
| 20 |
+
task2_1 = Task(benchmark="MMSI", metric="acc", col_name="MMSI(acc)")
|
| 21 |
+
task3_1 = Task(benchmark="Omni", metric="acc", col_name="Omni(acc)")
|
| 22 |
+
task4_1 = Task(benchmark="Core", metric="acc", col_name="Core(acc)")
|
| 23 |
+
task5_1 = Task(benchmark="SpatialViz", metric="acc", col_name="SpatialViz(acc)")
|
| 24 |
+
task6_1 = Task(benchmark="STARE", metric="acc", col_name="STARE(acc)")
|
| 25 |
+
task7_1 = Task(benchmark="SITEBench", metric="acc", col_name="SITEBench(acc)")
|
| 26 |
+
task8_1 = Task(benchmark="VSI (MCQ)", metric="acc", col_name="VSI (MCQ)(acc)")
|
| 27 |
+
|
| 28 |
+
# caa
|
| 29 |
+
task1_2 = Task(benchmark="MindCube", metric="caa", col_name="MindCube(caa)")
|
| 30 |
+
task2_2 = Task(benchmark="MMSI", metric="caa", col_name="MMSI(caa)")
|
| 31 |
+
task3_2 = Task(benchmark="Omni", metric="caa", col_name="Omni(caa)")
|
| 32 |
+
task4_2 = Task(benchmark="Core", metric="caa", col_name="Core(caa)")
|
| 33 |
+
task5_2 = Task(benchmark="SpatialViz", metric="caa", col_name="SpatialViz(caa)")
|
| 34 |
+
task6_2 = Task(benchmark="STARE", metric="caa", col_name="STARE(caa)")
|
| 35 |
+
task7_2 = Task(benchmark="SITEBench", metric="caa", col_name="SITEBench(caa)")
|
| 36 |
+
task8_2 = Task(benchmark="VSI (MCQ)", metric="caa", col_name="VSI (MCQ)(caa)")
|
| 37 |
+
|
| 38 |
+
# rand
|
| 39 |
+
task1_3 = Task(benchmark="MindCube", metric="rand", col_name="MindCube(rand)")
|
| 40 |
+
task2_3 = Task(benchmark="MMSI", metric="rand", col_name="MMSI(rand)")
|
| 41 |
+
task3_3 = Task(benchmark="Omni", metric="rand", col_name="Omni(rand)")
|
| 42 |
+
task4_3 = Task(benchmark="Core", metric="rand", col_name="Core(rand)")
|
| 43 |
+
task5_3 = Task(benchmark="SpatialViz", metric="rand", col_name="SpatialViz(rand)")
|
| 44 |
+
task6_3 = Task(benchmark="STARE", metric="rand", col_name="STARE(rand)")
|
| 45 |
+
task7_3 = Task(benchmark="SITEBench", metric="rand", col_name="SITEBench(rand)")
|
| 46 |
+
task8_3 = Task(benchmark="VSI (MCQ)", metric="rand", col_name="VSI (MCQ)(rand)")
|
| 47 |
|
| 48 |
|
| 49 |
NUM_FEWSHOT = 0 # Change with your few shot
|
src/display/css_html_js.py
CHANGED
|
@@ -2,6 +2,7 @@ from pathlib import Path
|
|
| 2 |
|
| 3 |
custom_css = Path("src/assets/css/custom.css")
|
| 4 |
|
|
|
|
| 5 |
get_window_url_params = """
|
| 6 |
function(url_params) {
|
| 7 |
const params = new URLSearchParams(window.location.search);
|
|
|
|
| 2 |
|
| 3 |
custom_css = Path("src/assets/css/custom.css")
|
| 4 |
|
| 5 |
+
# FIXME: seems deprecated
|
| 6 |
get_window_url_params = """
|
| 7 |
function(url_params) {
|
| 8 |
const params = new URLSearchParams(window.location.search);
|
src/display/formatting.py
CHANGED
|
@@ -1,27 +1,33 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 3 |
|
| 4 |
|
| 5 |
-
def make_clickable_model(model_name):
|
| 6 |
link = f"https://huggingface.co/{model_name}"
|
| 7 |
return model_hyperlink(link, model_name)
|
| 8 |
|
| 9 |
|
| 10 |
-
def styled_error(error):
|
| 11 |
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
| 12 |
|
| 13 |
|
| 14 |
-
def styled_warning(warn):
|
| 15 |
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
| 16 |
|
| 17 |
|
| 18 |
-
def styled_message(message):
|
| 19 |
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
| 20 |
|
| 21 |
|
| 22 |
-
def has_no_nan_values(df, columns):
|
| 23 |
-
return df[columns].notna().all(axis=1)
|
| 24 |
|
| 25 |
|
| 26 |
-
def has_nan_values(df, columns):
|
| 27 |
-
return df[columns].isna().any(axis=1)
|
|
|
|
| 1 |
+
import typing
|
| 2 |
+
|
| 3 |
+
if typing.TYPE_CHECKING:
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def model_hyperlink(link: str, model_name: str) -> str:
|
| 8 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 9 |
|
| 10 |
|
| 11 |
+
def make_clickable_model(model_name: str) -> str:
|
| 12 |
link = f"https://huggingface.co/{model_name}"
|
| 13 |
return model_hyperlink(link, model_name)
|
| 14 |
|
| 15 |
|
| 16 |
+
def styled_error(error: str) -> str:
|
| 17 |
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
| 18 |
|
| 19 |
|
| 20 |
+
def styled_warning(warn: str) -> str:
|
| 21 |
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
| 22 |
|
| 23 |
|
| 24 |
+
def styled_message(message: str) -> str:
|
| 25 |
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
| 26 |
|
| 27 |
|
| 28 |
+
def has_no_nan_values(df: "pd.DataFrame", columns: list[str]) -> "pd.Series":
|
| 29 |
+
return df.loc[:, columns].notna().all(axis=1)
|
| 30 |
|
| 31 |
|
| 32 |
+
def has_nan_values(df: "pd.DataFrame", columns: list[str]) -> "pd.Series":
|
| 33 |
+
return df.loc[:, columns].isna().any(axis=1)
|
src/display/utils.py
CHANGED
|
@@ -1,63 +1,112 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from enum import Enum
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
from src.about import Tasks
|
| 5 |
|
| 6 |
|
| 7 |
-
def fields(
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
# These classes are for user facing column names,
|
| 12 |
# to avoid having to change them all around the code
|
| 13 |
# when a modif is needed
|
| 14 |
-
|
| 15 |
-
class ColumnContent:
|
| 16 |
name: str
|
| 17 |
-
type: str
|
| 18 |
-
displayed_by_default: bool
|
| 19 |
hidden: bool = False
|
| 20 |
never_hidden: bool = False
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
# For the queue columns in the submission tab
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
|
| 58 |
# All the model information that we might need
|
| 59 |
-
|
| 60 |
-
class ModelDetails:
|
| 61 |
name: str
|
| 62 |
display_name: str = ""
|
| 63 |
symbol: str = "" # emoji
|
|
@@ -87,17 +136,18 @@ class ModelType(Enum):
|
|
| 87 |
|
| 88 |
|
| 89 |
class WeightType(Enum):
|
| 90 |
-
Adapter = ModelDetails("Adapter")
|
| 91 |
-
Original = ModelDetails("Original")
|
| 92 |
-
Delta = ModelDetails("Delta")
|
| 93 |
|
| 94 |
|
| 95 |
class Precision(Enum):
|
| 96 |
-
float16 = ModelDetails("float16")
|
| 97 |
-
bfloat16 = ModelDetails("bfloat16")
|
| 98 |
-
Unknown = ModelDetails("?")
|
| 99 |
|
| 100 |
-
|
|
|
|
| 101 |
if precision in ["torch.float16", "float16"]:
|
| 102 |
return Precision.float16
|
| 103 |
if precision in ["torch.bfloat16", "bfloat16"]:
|
|
@@ -106,9 +156,9 @@ class Precision(Enum):
|
|
| 106 |
|
| 107 |
|
| 108 |
# Column selection
|
| 109 |
-
COLS = [c.name for c in fields(
|
| 110 |
|
| 111 |
-
EVAL_COLS = [c.name for c in fields(
|
| 112 |
-
EVAL_TYPES = [c.type for c in fields(
|
| 113 |
|
| 114 |
-
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
|
|
|
| 1 |
+
"""Based on https://huggingface.co/spaces/demo-leaderboard-backend/leaderboard/blob/main/src/display/utils.py
|
| 2 |
+
|
| 3 |
+
Enhanced with Pydantic models.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
from enum import Enum
|
| 7 |
+
from typing import Literal, Union
|
| 8 |
+
|
| 9 |
+
from pydantic import BaseModel, ConfigDict, create_model
|
| 10 |
+
from typing_extensions import Self
|
| 11 |
|
| 12 |
from src.about import Tasks
|
| 13 |
|
| 14 |
|
| 15 |
+
def fields(
|
| 16 |
+
raw_class: Union[
|
| 17 |
+
type["_AutoEvalColumnBase"],
|
| 18 |
+
"_AutoEvalColumnBase",
|
| 19 |
+
type["EvalQueueColumnCls"],
|
| 20 |
+
"EvalQueueColumnCls",
|
| 21 |
+
],
|
| 22 |
+
) -> list["ColumnContent"]:
|
| 23 |
+
return [v.default for k, v in raw_class.model_fields.items() if k[:2] != "__" and k[-2:] != "__"]
|
| 24 |
|
| 25 |
|
| 26 |
# These classes are for user facing column names,
|
| 27 |
# to avoid having to change them all around the code
|
| 28 |
# when a modif is needed
|
| 29 |
+
class ColumnContent(BaseModel):
|
|
|
|
| 30 |
name: str
|
| 31 |
+
type: Literal["str", "number", "bool", "markdown"]
|
| 32 |
+
displayed_by_default: bool | Literal["Original"] = False
|
| 33 |
hidden: bool = False
|
| 34 |
never_hidden: bool = False
|
| 35 |
|
| 36 |
+
@classmethod
|
| 37 |
+
def new(
|
| 38 |
+
cls,
|
| 39 |
+
name: str,
|
| 40 |
+
type: Literal["str", "number", "bool", "markdown"],
|
| 41 |
+
displayed_by_default: bool | Literal["Original"] = False,
|
| 42 |
+
*,
|
| 43 |
+
hidden: bool = False,
|
| 44 |
+
never_hidden: bool = False,
|
| 45 |
+
) -> Self:
|
| 46 |
+
return cls(
|
| 47 |
+
name=name,
|
| 48 |
+
type=type,
|
| 49 |
+
displayed_by_default=displayed_by_default,
|
| 50 |
+
hidden=hidden,
|
| 51 |
+
never_hidden=never_hidden,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class _AutoEvalColumnBase(BaseModel):
|
| 56 |
+
model_config: ConfigDict = ConfigDict(extra="forbid", frozen=True)
|
| 57 |
+
|
| 58 |
+
model_type_symbol: ColumnContent = ColumnContent(
|
| 59 |
+
name="T", type="str", displayed_by_default=True, never_hidden=True
|
| 60 |
+
)
|
| 61 |
+
model: ColumnContent = ColumnContent.new("Model", "markdown", True, never_hidden=True)
|
| 62 |
+
average: ColumnContent = ColumnContent.new("Average ⬆️", "number", True)
|
| 63 |
+
|
| 64 |
+
model_type: ColumnContent = ColumnContent.new("Type", "str")
|
| 65 |
+
architecture: ColumnContent = ColumnContent.new("Architecture", "str")
|
| 66 |
+
weight_type: ColumnContent = ColumnContent.new("Weight type", "str", hidden=True)
|
| 67 |
+
precision: ColumnContent = ColumnContent.new("Precision", "str")
|
| 68 |
+
license: ColumnContent = ColumnContent.new("Hub License", "str")
|
| 69 |
+
params: ColumnContent = ColumnContent.new("#Params (B)", "number")
|
| 70 |
+
likes: ColumnContent = ColumnContent.new("Hub ❤️", "number")
|
| 71 |
+
still_on_hub: ColumnContent = ColumnContent.new("Available on the hub", "bool")
|
| 72 |
+
revision: ColumnContent = ColumnContent.new("Model sha", "str")
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# We use create_model to dynamically fill the scores from Tasks
|
| 76 |
+
field_definitions = {
|
| 77 |
+
task.name: (
|
| 78 |
+
ColumnContent,
|
| 79 |
+
ColumnContent.new(task.value.col_name, "number", True),
|
| 80 |
+
)
|
| 81 |
+
for task in Tasks
|
| 82 |
+
}
|
| 83 |
+
AutoEvalColumnCls: type[_AutoEvalColumnBase] = create_model( # pyright: ignore[reportCallIssue]
|
| 84 |
+
'_AutoEvalColumnCls',
|
| 85 |
+
__base__=_AutoEvalColumnBase,
|
| 86 |
+
**field_definitions, # pyright: ignore[reportArgumentType]
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
AutoEvalColumn = AutoEvalColumnCls()
|
| 91 |
|
| 92 |
|
| 93 |
# For the queue columns in the submission tab
|
| 94 |
+
class EvalQueueColumnCls(BaseModel): # Queue column
|
| 95 |
+
model_config = ConfigDict(extra="forbid", frozen=True)
|
| 96 |
+
|
| 97 |
+
model: ColumnContent = ColumnContent.new("model", "markdown", True)
|
| 98 |
+
revision: ColumnContent = ColumnContent.new("revision", "str", True)
|
| 99 |
+
private: ColumnContent = ColumnContent.new("private", "bool", True)
|
| 100 |
+
precision: ColumnContent = ColumnContent.new("precision", "str", True)
|
| 101 |
+
weight_type: ColumnContent = ColumnContent.new("weight_type", "str", "Original")
|
| 102 |
+
status: ColumnContent = ColumnContent.new("status", "str", True)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
EvalQueueColumn = EvalQueueColumnCls()
|
| 106 |
|
| 107 |
|
| 108 |
# All the model information that we might need
|
| 109 |
+
class ModelDetails(BaseModel):
|
|
|
|
| 110 |
name: str
|
| 111 |
display_name: str = ""
|
| 112 |
symbol: str = "" # emoji
|
|
|
|
| 136 |
|
| 137 |
|
| 138 |
class WeightType(Enum):
|
| 139 |
+
Adapter = ModelDetails(name="Adapter")
|
| 140 |
+
Original = ModelDetails(name="Original")
|
| 141 |
+
Delta = ModelDetails(name="Delta")
|
| 142 |
|
| 143 |
|
| 144 |
class Precision(Enum):
|
| 145 |
+
float16 = ModelDetails(name="float16")
|
| 146 |
+
bfloat16 = ModelDetails(name="bfloat16")
|
| 147 |
+
Unknown = ModelDetails(name="?")
|
| 148 |
|
| 149 |
+
@classmethod
|
| 150 |
+
def from_str(cls, precision):
|
| 151 |
if precision in ["torch.float16", "float16"]:
|
| 152 |
return Precision.float16
|
| 153 |
if precision in ["torch.bfloat16", "bfloat16"]:
|
|
|
|
| 156 |
|
| 157 |
|
| 158 |
# Column selection
|
| 159 |
+
COLS: list[str] = [c.name for c in fields(AutoEvalColumnCls) if not c.hidden]
|
| 160 |
|
| 161 |
+
EVAL_COLS: list[str] = [c.name for c in fields(EvalQueueColumnCls)]
|
| 162 |
+
EVAL_TYPES: list[Literal["str", "number", "bool", "markdown"]] = [c.type for c in fields(EvalQueueColumnCls)]
|
| 163 |
|
| 164 |
+
BENCHMARK_COLS: list[str] = [t.value.col_name for t in Tasks]
|
src/envs.py
CHANGED
|
@@ -23,14 +23,17 @@ class Settings(BaseSettings):
|
|
| 23 |
]
|
| 24 |
|
| 25 |
@computed_field
|
|
|
|
| 26 |
def REPO_ID(self) -> str:
|
| 27 |
return (Path(self.OWNER) / "leaderboard").as_posix()
|
| 28 |
|
| 29 |
@computed_field
|
|
|
|
| 30 |
def QUEUE_REPO(self) -> str:
|
| 31 |
return (Path(self.OWNER) / "requests").as_posix()
|
| 32 |
|
| 33 |
@computed_field
|
|
|
|
| 34 |
def RESULTS_REPO(self) -> str:
|
| 35 |
return (Path(self.OWNER) / "results").as_posix()
|
| 36 |
|
|
@@ -42,18 +45,22 @@ class Settings(BaseSettings):
|
|
| 42 |
# Local caches
|
| 43 |
|
| 44 |
@computed_field
|
|
|
|
| 45 |
def EVAL_REQUESTS_PATH(self) -> str:
|
| 46 |
return (Path(self.CACHE_PATH) / "eval-queue").as_posix()
|
| 47 |
|
| 48 |
@computed_field
|
|
|
|
| 49 |
def EVAL_RESULTS_PATH(self) -> str:
|
| 50 |
return (Path(self.CACHE_PATH) / "eval-results").as_posix()
|
| 51 |
|
| 52 |
@computed_field
|
|
|
|
| 53 |
def EVAL_REQUESTS_PATH_BACKEND(self) -> str:
|
| 54 |
return (Path(self.CACHE_PATH) / "eval-queue-bk").as_posix()
|
| 55 |
|
| 56 |
@computed_field
|
|
|
|
| 57 |
def EVAL_RESULTS_PATH_BACKEND(self) -> str:
|
| 58 |
return (Path(self.CACHE_PATH) / "eval-results-bk").as_posix()
|
| 59 |
|
|
@@ -63,5 +70,5 @@ class Settings(BaseSettings):
|
|
| 63 |
return HfApi(token=self.TOKEN)
|
| 64 |
|
| 65 |
|
| 66 |
-
settings = Settings()
|
| 67 |
API = settings.API
|
|
|
|
| 23 |
]
|
| 24 |
|
| 25 |
@computed_field
|
| 26 |
+
@cached_property
|
| 27 |
def REPO_ID(self) -> str:
|
| 28 |
return (Path(self.OWNER) / "leaderboard").as_posix()
|
| 29 |
|
| 30 |
@computed_field
|
| 31 |
+
@cached_property
|
| 32 |
def QUEUE_REPO(self) -> str:
|
| 33 |
return (Path(self.OWNER) / "requests").as_posix()
|
| 34 |
|
| 35 |
@computed_field
|
| 36 |
+
@cached_property
|
| 37 |
def RESULTS_REPO(self) -> str:
|
| 38 |
return (Path(self.OWNER) / "results").as_posix()
|
| 39 |
|
|
|
|
| 45 |
# Local caches
|
| 46 |
|
| 47 |
@computed_field
|
| 48 |
+
@cached_property
|
| 49 |
def EVAL_REQUESTS_PATH(self) -> str:
|
| 50 |
return (Path(self.CACHE_PATH) / "eval-queue").as_posix()
|
| 51 |
|
| 52 |
@computed_field
|
| 53 |
+
@cached_property
|
| 54 |
def EVAL_RESULTS_PATH(self) -> str:
|
| 55 |
return (Path(self.CACHE_PATH) / "eval-results").as_posix()
|
| 56 |
|
| 57 |
@computed_field
|
| 58 |
+
@cached_property
|
| 59 |
def EVAL_REQUESTS_PATH_BACKEND(self) -> str:
|
| 60 |
return (Path(self.CACHE_PATH) / "eval-queue-bk").as_posix()
|
| 61 |
|
| 62 |
@computed_field
|
| 63 |
+
@cached_property
|
| 64 |
def EVAL_RESULTS_PATH_BACKEND(self) -> str:
|
| 65 |
return (Path(self.CACHE_PATH) / "eval-results-bk").as_posix()
|
| 66 |
|
|
|
|
| 70 |
return HfApi(token=self.TOKEN)
|
| 71 |
|
| 72 |
|
| 73 |
+
settings = Settings() # pyright: ignore[reportCallIssue]
|
| 74 |
API = settings.API
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -1,11 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import glob
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
-
from
|
| 5 |
-
from typing import Any
|
| 6 |
|
| 7 |
-
import dateutil
|
| 8 |
import numpy as np
|
|
|
|
| 9 |
from typing_extensions import Self
|
| 10 |
|
| 11 |
from src.display.formatting import make_clickable_model
|
|
@@ -13,16 +19,35 @@ from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, Weigh
|
|
| 13 |
from src.submission.check_validity import is_model_on_hub
|
| 14 |
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
| 19 |
|
| 20 |
eval_name: str # org_model_precision (uid)
|
| 21 |
full_model: str # org/model (path on hub)
|
| 22 |
-
org: str
|
| 23 |
model: str
|
| 24 |
revision: str # commit hash, "" if main
|
| 25 |
-
results: dict
|
| 26 |
precision: Precision = Precision.Unknown
|
| 27 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 28 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
|
@@ -36,16 +61,14 @@ class EvalResult:
|
|
| 36 |
@classmethod
|
| 37 |
def init_from_json_file(cls, json_filepath: str) -> Self:
|
| 38 |
"""Inits the result from the specific model result file"""
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
config = data.get("config")
|
| 43 |
|
| 44 |
# Precision
|
| 45 |
-
precision = Precision.from_str(config.
|
| 46 |
|
| 47 |
# Get model and org
|
| 48 |
-
org_and_model = config.
|
| 49 |
org_and_model = org_and_model.split("/", 1)
|
| 50 |
|
| 51 |
if len(org_and_model) == 1:
|
|
@@ -59,38 +82,38 @@ class EvalResult:
|
|
| 59 |
full_model = "/".join(org_and_model)
|
| 60 |
|
| 61 |
still_on_hub, _, model_config = is_model_on_hub(
|
| 62 |
-
full_model, config.
|
| 63 |
)
|
| 64 |
-
architecture = "?"
|
| 65 |
if model_config is not None:
|
| 66 |
-
architectures = getattr(model_config, "architectures", None)
|
| 67 |
if architectures:
|
| 68 |
architecture = ";".join(architectures)
|
| 69 |
|
| 70 |
# Extract results available in this file (some results are split in several files)
|
| 71 |
-
results = {}
|
| 72 |
-
for
|
| 73 |
-
task =
|
| 74 |
|
| 75 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 76 |
-
accs = np.array([v.get(task.metric, None) for k, v in data
|
| 77 |
if accs.size == 0 or any(acc is None for acc in accs):
|
| 78 |
continue
|
| 79 |
|
| 80 |
mean_acc = np.mean(accs) * 100.0
|
| 81 |
-
results[task.benchmark] = mean_acc
|
| 82 |
-
|
| 83 |
-
return cls(
|
| 84 |
-
eval_name
|
| 85 |
-
full_model
|
| 86 |
-
org
|
| 87 |
-
model
|
| 88 |
-
results
|
| 89 |
-
precision
|
| 90 |
-
revision
|
| 91 |
-
still_on_hub
|
| 92 |
-
architecture
|
| 93 |
-
)
|
| 94 |
|
| 95 |
def update_with_request_file(self, requests_path: str) -> None:
|
| 96 |
"""Finds the relevant request file for the current model and updates info with it"""
|
|
@@ -135,7 +158,7 @@ class EvalResult:
|
|
| 135 |
return data_dict
|
| 136 |
|
| 137 |
|
| 138 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
| 139 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
| 140 |
request_files = os.path.join(
|
| 141 |
requests_path,
|
|
@@ -166,7 +189,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 166 |
# Sort the files by date
|
| 167 |
try:
|
| 168 |
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
| 169 |
-
except dateutil.parser.
|
| 170 |
files = [files[-1]]
|
| 171 |
|
| 172 |
for file in files:
|
|
|
|
| 1 |
+
"""Based on https://huggingface.co/spaces/demo-leaderboard-backend/leaderboard/blob/main/src/leaderboard/read_evals.py
|
| 2 |
+
|
| 3 |
+
Enhanced with Pydantic models.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
import glob
|
| 7 |
import json
|
| 8 |
import os
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import Annotated, Any
|
| 11 |
|
| 12 |
+
import dateutil.parser
|
| 13 |
import numpy as np
|
| 14 |
+
from pydantic import BaseModel, ConfigDict, Field
|
| 15 |
from typing_extensions import Self
|
| 16 |
|
| 17 |
from src.display.formatting import make_clickable_model
|
|
|
|
| 19 |
from src.submission.check_validity import is_model_on_hub
|
| 20 |
|
| 21 |
|
| 22 |
+
class EvalResultJson(BaseModel):
|
| 23 |
+
"""Model of the eval result json file."""
|
| 24 |
+
|
| 25 |
+
model_config: ConfigDict = ConfigDict(extra="allow", frozen=True)
|
| 26 |
+
|
| 27 |
+
config: "EvalResultJson_Config"
|
| 28 |
+
results: dict[str, dict[str, float | None]]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class EvalResultJson_Config(BaseModel):
|
| 32 |
+
"""`config` in the eval result json file."""
|
| 33 |
+
|
| 34 |
+
model_config: ConfigDict = ConfigDict(extra="allow", frozen=True)
|
| 35 |
+
|
| 36 |
+
model_dtype: Annotated[str, Field(..., description="The model precision. e.g. torch.bfloat16")]
|
| 37 |
+
model_name: Annotated[str, Field(..., description="The model name. e.g. Qwen/Qwen2.5-3B")]
|
| 38 |
+
model_sha: Annotated[str, Field(description="The model sha. e.g. 3aab1f1954e9cc14eb9509a215f9e5ca08227a9b")] = ""
|
| 39 |
+
model_args: Annotated[str | None, Field(description="The model args.")] = None
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class EvalResult(BaseModel):
|
| 43 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
| 44 |
|
| 45 |
eval_name: str # org_model_precision (uid)
|
| 46 |
full_model: str # org/model (path on hub)
|
| 47 |
+
org: str | None
|
| 48 |
model: str
|
| 49 |
revision: str # commit hash, "" if main
|
| 50 |
+
results: dict[str, float]
|
| 51 |
precision: Precision = Precision.Unknown
|
| 52 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 53 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
|
|
|
| 61 |
@classmethod
|
| 62 |
def init_from_json_file(cls, json_filepath: str) -> Self:
|
| 63 |
"""Inits the result from the specific model result file"""
|
| 64 |
+
data = EvalResultJson.model_validate_json(Path(json_filepath).read_text())
|
| 65 |
+
config = data.config
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# Precision
|
| 68 |
+
precision = Precision.from_str(config.model_dtype)
|
| 69 |
|
| 70 |
# Get model and org
|
| 71 |
+
org_and_model = config.model_name or config.model_args or ""
|
| 72 |
org_and_model = org_and_model.split("/", 1)
|
| 73 |
|
| 74 |
if len(org_and_model) == 1:
|
|
|
|
| 82 |
full_model = "/".join(org_and_model)
|
| 83 |
|
| 84 |
still_on_hub, _, model_config = is_model_on_hub(
|
| 85 |
+
full_model, config.model_sha or "main", trust_remote_code=True, test_tokenizer=False
|
| 86 |
)
|
| 87 |
+
architecture: str = "?"
|
| 88 |
if model_config is not None:
|
| 89 |
+
architectures: list[str] | None = getattr(model_config, "architectures", None)
|
| 90 |
if architectures:
|
| 91 |
architecture = ";".join(architectures)
|
| 92 |
|
| 93 |
# Extract results available in this file (some results are split in several files)
|
| 94 |
+
results: dict[str, float] = {}
|
| 95 |
+
for t in Tasks:
|
| 96 |
+
task = t.value
|
| 97 |
|
| 98 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 99 |
+
accs = np.array([v.get(task.metric, None) for k, v in data.results.items() if task.benchmark == k])
|
| 100 |
if accs.size == 0 or any(acc is None for acc in accs):
|
| 101 |
continue
|
| 102 |
|
| 103 |
mean_acc = np.mean(accs) * 100.0
|
| 104 |
+
results[task.benchmark] = float(mean_acc)
|
| 105 |
+
|
| 106 |
+
return cls.model_validate({
|
| 107 |
+
"eval_name": result_key,
|
| 108 |
+
"full_model": full_model,
|
| 109 |
+
"org": org,
|
| 110 |
+
"model": model,
|
| 111 |
+
"results": results,
|
| 112 |
+
"precision": precision,
|
| 113 |
+
"revision": config.model_sha or "",
|
| 114 |
+
"still_on_hub": still_on_hub,
|
| 115 |
+
"architecture": architecture,
|
| 116 |
+
})
|
| 117 |
|
| 118 |
def update_with_request_file(self, requests_path: str) -> None:
|
| 119 |
"""Finds the relevant request file for the current model and updates info with it"""
|
|
|
|
| 158 |
return data_dict
|
| 159 |
|
| 160 |
|
| 161 |
+
def get_request_file_for_model(requests_path, model_name, precision) -> str:
|
| 162 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
| 163 |
request_files = os.path.join(
|
| 164 |
requests_path,
|
|
|
|
| 189 |
# Sort the files by date
|
| 190 |
try:
|
| 191 |
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
| 192 |
+
except dateutil.parser.ParserError:
|
| 193 |
files = [files[-1]]
|
| 194 |
|
| 195 |
for file in files:
|
src/leaderboard/read_evals_orig.py
DELETED
|
@@ -1,194 +0,0 @@
|
|
| 1 |
-
import glob
|
| 2 |
-
import json
|
| 3 |
-
import os
|
| 4 |
-
from dataclasses import dataclass
|
| 5 |
-
|
| 6 |
-
import dateutil
|
| 7 |
-
import numpy as np
|
| 8 |
-
|
| 9 |
-
from src.display.formatting import make_clickable_model
|
| 10 |
-
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
|
| 11 |
-
from src.submission.check_validity import is_model_on_hub
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
@dataclass
|
| 15 |
-
class EvalResult:
|
| 16 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
| 17 |
-
|
| 18 |
-
eval_name: str # org_model_precision (uid)
|
| 19 |
-
full_model: str # org/model (path on hub)
|
| 20 |
-
org: str
|
| 21 |
-
model: str
|
| 22 |
-
revision: str # commit hash, "" if main
|
| 23 |
-
results: dict
|
| 24 |
-
precision: Precision = Precision.Unknown
|
| 25 |
-
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 26 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 27 |
-
architecture: str = "Unknown"
|
| 28 |
-
license: str = "?"
|
| 29 |
-
likes: int = 0
|
| 30 |
-
num_params: int = 0
|
| 31 |
-
date: str = "" # submission date of request file
|
| 32 |
-
still_on_hub: bool = False
|
| 33 |
-
|
| 34 |
-
@classmethod
|
| 35 |
-
def init_from_json_file(self, json_filepath):
|
| 36 |
-
"""Inits the result from the specific model result file"""
|
| 37 |
-
with open(json_filepath) as fp:
|
| 38 |
-
data = json.load(fp)
|
| 39 |
-
|
| 40 |
-
config = data.get("config")
|
| 41 |
-
|
| 42 |
-
# Precision
|
| 43 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
| 44 |
-
|
| 45 |
-
# Get model and org
|
| 46 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
| 47 |
-
org_and_model = org_and_model.split("/", 1)
|
| 48 |
-
|
| 49 |
-
if len(org_and_model) == 1:
|
| 50 |
-
org = None
|
| 51 |
-
model = org_and_model[0]
|
| 52 |
-
result_key = f"{model}_{precision.value.name}"
|
| 53 |
-
else:
|
| 54 |
-
org = org_and_model[0]
|
| 55 |
-
model = org_and_model[1]
|
| 56 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
| 57 |
-
full_model = "/".join(org_and_model)
|
| 58 |
-
|
| 59 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
| 60 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
| 61 |
-
)
|
| 62 |
-
architecture = "?"
|
| 63 |
-
if model_config is not None:
|
| 64 |
-
architectures = getattr(model_config, "architectures", None)
|
| 65 |
-
if architectures:
|
| 66 |
-
architecture = ";".join(architectures)
|
| 67 |
-
|
| 68 |
-
# Extract results available in this file (some results are split in several files)
|
| 69 |
-
results = {}
|
| 70 |
-
for task in Tasks:
|
| 71 |
-
task = task.value
|
| 72 |
-
|
| 73 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
| 74 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
| 75 |
-
if accs.size == 0 or any(acc is None for acc in accs):
|
| 76 |
-
continue
|
| 77 |
-
|
| 78 |
-
mean_acc = np.mean(accs) * 100.0
|
| 79 |
-
results[task.benchmark] = mean_acc
|
| 80 |
-
|
| 81 |
-
return self(
|
| 82 |
-
eval_name=result_key,
|
| 83 |
-
full_model=full_model,
|
| 84 |
-
org=org,
|
| 85 |
-
model=model,
|
| 86 |
-
results=results,
|
| 87 |
-
precision=precision,
|
| 88 |
-
revision=config.get("model_sha", ""),
|
| 89 |
-
still_on_hub=still_on_hub,
|
| 90 |
-
architecture=architecture,
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
def update_with_request_file(self, requests_path):
|
| 94 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
| 95 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
| 96 |
-
|
| 97 |
-
try:
|
| 98 |
-
with open(request_file) as f:
|
| 99 |
-
request = json.load(f)
|
| 100 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
| 101 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 102 |
-
self.license = request.get("license", "?")
|
| 103 |
-
self.likes = request.get("likes", 0)
|
| 104 |
-
self.num_params = request.get("params", 0)
|
| 105 |
-
self.date = request.get("submitted_time", "")
|
| 106 |
-
except Exception:
|
| 107 |
-
print(
|
| 108 |
-
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
def to_dict(self):
|
| 112 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 113 |
-
average = sum(v for v in self.results.values() if v is not None) / len(Tasks)
|
| 114 |
-
data_dict = {
|
| 115 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
| 116 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 117 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 118 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 119 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 120 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
| 121 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 122 |
-
AutoEvalColumn.revision.name: self.revision,
|
| 123 |
-
AutoEvalColumn.average.name: average,
|
| 124 |
-
AutoEvalColumn.license.name: self.license,
|
| 125 |
-
AutoEvalColumn.likes.name: self.likes,
|
| 126 |
-
AutoEvalColumn.params.name: self.num_params,
|
| 127 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 128 |
-
}
|
| 129 |
-
|
| 130 |
-
for task in Tasks:
|
| 131 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 132 |
-
|
| 133 |
-
return data_dict
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
| 137 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
| 138 |
-
request_files = os.path.join(
|
| 139 |
-
requests_path,
|
| 140 |
-
f"{model_name}_eval_request_*.json",
|
| 141 |
-
)
|
| 142 |
-
request_files = glob.glob(request_files)
|
| 143 |
-
|
| 144 |
-
# Select correct request file (precision)
|
| 145 |
-
request_file = ""
|
| 146 |
-
request_files = sorted(request_files, reverse=True)
|
| 147 |
-
for tmp_request_file in request_files:
|
| 148 |
-
with open(tmp_request_file) as f:
|
| 149 |
-
req_content = json.load(f)
|
| 150 |
-
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
|
| 151 |
-
request_file = tmp_request_file
|
| 152 |
-
return request_file
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
| 156 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
| 157 |
-
model_result_filepaths = []
|
| 158 |
-
|
| 159 |
-
for root, _, files in os.walk(results_path):
|
| 160 |
-
# We should only have json files in model results
|
| 161 |
-
if len(files) == 0 or any(not f.endswith(".json") for f in files):
|
| 162 |
-
continue
|
| 163 |
-
|
| 164 |
-
# Sort the files by date
|
| 165 |
-
try:
|
| 166 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
| 167 |
-
except dateutil.parser._parser.ParserError:
|
| 168 |
-
files = [files[-1]]
|
| 169 |
-
|
| 170 |
-
for file in files:
|
| 171 |
-
model_result_filepaths.append(os.path.join(root, file))
|
| 172 |
-
|
| 173 |
-
eval_results = {}
|
| 174 |
-
for model_result_filepath in model_result_filepaths:
|
| 175 |
-
# Creation of result
|
| 176 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
| 177 |
-
eval_result.update_with_request_file(requests_path)
|
| 178 |
-
|
| 179 |
-
# Store results of same eval together
|
| 180 |
-
eval_name = eval_result.eval_name
|
| 181 |
-
if eval_name in eval_results.keys():
|
| 182 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
| 183 |
-
else:
|
| 184 |
-
eval_results[eval_name] = eval_result
|
| 185 |
-
|
| 186 |
-
results = []
|
| 187 |
-
for v in eval_results.values():
|
| 188 |
-
try:
|
| 189 |
-
v.to_dict() # we test if the dict version is complete
|
| 190 |
-
results.append(v)
|
| 191 |
-
except KeyError: # not all eval values present
|
| 192 |
-
continue
|
| 193 |
-
|
| 194 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
CHANGED
|
@@ -23,7 +23,12 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
| 23 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 24 |
|
| 25 |
|
| 26 |
-
def get_leaderboard_df(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
Creates a sorted leaderboard DataFrame from evaluation results.
|
| 29 |
|
|
@@ -52,14 +57,14 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
| 52 |
|
| 53 |
df = pd.DataFrame.from_records(all_data_json)
|
| 54 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 55 |
-
df = df[cols].round(decimals=2)
|
| 56 |
|
| 57 |
# filter out if any of the benchmarks have not been produced
|
| 58 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 59 |
return df
|
| 60 |
|
| 61 |
|
| 62 |
-
def get_evaluation_queue_df(save_path: str, cols: list) ->
|
| 63 |
"""
|
| 64 |
Creates separate DataFrames for different evaluation queue statuses.
|
| 65 |
|
|
@@ -72,7 +77,7 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
| 72 |
cols (list): List of column names to include in the final DataFrames
|
| 73 |
|
| 74 |
Returns:
|
| 75 |
-
|
| 76 |
1. df_finished: Evaluations with status "FINISHED*" or "PENDING_NEW_EVAL"
|
| 77 |
2. df_running: Evaluations with status "RUNNING"
|
| 78 |
3. df_pending: Evaluations with status "PENDING" or "RERUN"
|
|
@@ -120,4 +125,4 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
| 120 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 121 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 122 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
| 123 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
| 23 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 24 |
|
| 25 |
|
| 26 |
+
def get_leaderboard_df(
|
| 27 |
+
results_path: str,
|
| 28 |
+
requests_path: str,
|
| 29 |
+
cols: list[str],
|
| 30 |
+
benchmark_cols: list[str],
|
| 31 |
+
) -> pd.DataFrame:
|
| 32 |
"""
|
| 33 |
Creates a sorted leaderboard DataFrame from evaluation results.
|
| 34 |
|
|
|
|
| 57 |
|
| 58 |
df = pd.DataFrame.from_records(all_data_json)
|
| 59 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 60 |
+
df = df.loc[:, cols].round(decimals=2)
|
| 61 |
|
| 62 |
# filter out if any of the benchmarks have not been produced
|
| 63 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 64 |
return df
|
| 65 |
|
| 66 |
|
| 67 |
+
def get_evaluation_queue_df(save_path: str, cols: list[str]) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
| 68 |
"""
|
| 69 |
Creates separate DataFrames for different evaluation queue statuses.
|
| 70 |
|
|
|
|
| 77 |
cols (list): List of column names to include in the final DataFrames
|
| 78 |
|
| 79 |
Returns:
|
| 80 |
+
tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: A tuple containing three DataFrames in order:
|
| 81 |
1. df_finished: Evaluations with status "FINISHED*" or "PENDING_NEW_EVAL"
|
| 82 |
2. df_running: Evaluations with status "RUNNING"
|
| 83 |
3. df_pending: Evaluations with status "PENDING" or "RERUN"
|
|
|
|
| 125 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 126 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 127 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
| 128 |
+
return df_finished.loc[:, cols], df_running.loc[:, cols], df_pending.loc[:, cols]
|
src/submission/check_validity.py
CHANGED
|
@@ -1,19 +1,23 @@
|
|
| 1 |
import json
|
| 2 |
import os
|
|
|
|
| 3 |
from collections import defaultdict
|
| 4 |
|
| 5 |
-
import huggingface_hub
|
| 6 |
from huggingface_hub import ModelCard
|
| 7 |
from huggingface_hub.hf_api import ModelInfo
|
| 8 |
from transformers import AutoConfig
|
| 9 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
| 13 |
"""Checks if the model card and license exist and have been filled"""
|
| 14 |
try:
|
| 15 |
card = ModelCard.load(repo_id)
|
| 16 |
-
except huggingface_hub.
|
| 17 |
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
| 18 |
|
| 19 |
# Enforce license metadata
|
|
@@ -32,8 +36,16 @@ def check_model_card(repo_id: str) -> tuple[bool, str]:
|
|
| 32 |
|
| 33 |
|
| 34 |
def is_model_on_hub(
|
| 35 |
-
model_name: str,
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
| 38 |
try:
|
| 39 |
config = AutoConfig.from_pretrained(
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
+
import typing
|
| 4 |
from collections import defaultdict
|
| 5 |
|
| 6 |
+
import huggingface_hub.errors
|
| 7 |
from huggingface_hub import ModelCard
|
| 8 |
from huggingface_hub.hf_api import ModelInfo
|
| 9 |
from transformers import AutoConfig
|
| 10 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
| 11 |
|
| 12 |
+
if typing.TYPE_CHECKING:
|
| 13 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 14 |
+
|
| 15 |
|
| 16 |
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
| 17 |
"""Checks if the model card and license exist and have been filled"""
|
| 18 |
try:
|
| 19 |
card = ModelCard.load(repo_id)
|
| 20 |
+
except huggingface_hub.errors.EntryNotFoundError:
|
| 21 |
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
| 22 |
|
| 23 |
# Enforce license metadata
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
def is_model_on_hub(
|
| 39 |
+
model_name: str,
|
| 40 |
+
revision: str,
|
| 41 |
+
token: str | None = None,
|
| 42 |
+
trust_remote_code=False,
|
| 43 |
+
test_tokenizer=False,
|
| 44 |
+
) -> tuple[
|
| 45 |
+
bool,
|
| 46 |
+
str | None,
|
| 47 |
+
"PretrainedConfig | None",
|
| 48 |
+
]:
|
| 49 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
| 50 |
try:
|
| 51 |
config = AutoConfig.from_pretrained(
|
uv.lock
CHANGED
|
@@ -687,6 +687,7 @@ dependencies = [
|
|
| 687 |
{ name = "python-dotenv" },
|
| 688 |
{ name = "rich" },
|
| 689 |
{ name = "sentencepiece" },
|
|
|
|
| 690 |
{ name = "tokenizers" },
|
| 691 |
{ name = "tqdm" },
|
| 692 |
{ name = "transformers" },
|
|
@@ -715,6 +716,7 @@ requires-dist = [
|
|
| 715 |
{ name = "python-dotenv", specifier = ">=1.2.1" },
|
| 716 |
{ name = "rich", specifier = ">=14.2.0" },
|
| 717 |
{ name = "sentencepiece" },
|
|
|
|
| 718 |
{ name = "tokenizers", specifier = ">=0.15.0" },
|
| 719 |
{ name = "tqdm" },
|
| 720 |
{ name = "transformers" },
|
|
@@ -1305,6 +1307,15 @@ wheels = [
|
|
| 1305 |
{ url = "https://files.pythonhosted.org/packages/be/72/2db2f49247d0a18b4f1bb9a5a39a0162869acf235f3a96418363947b3d46/starlette-0.48.0-py3-none-any.whl", hash = "sha256:0764ca97b097582558ecb498132ed0c7d942f233f365b86ba37770e026510659", size = 73736, upload-time = "2025-09-13T08:41:03.869Z" },
|
| 1306 |
]
|
| 1307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1308 |
[[package]]
|
| 1309 |
name = "tokenizers"
|
| 1310 |
version = "0.22.1"
|
|
|
|
| 687 |
{ name = "python-dotenv" },
|
| 688 |
{ name = "rich" },
|
| 689 |
{ name = "sentencepiece" },
|
| 690 |
+
{ name = "tabulate" },
|
| 691 |
{ name = "tokenizers" },
|
| 692 |
{ name = "tqdm" },
|
| 693 |
{ name = "transformers" },
|
|
|
|
| 716 |
{ name = "python-dotenv", specifier = ">=1.2.1" },
|
| 717 |
{ name = "rich", specifier = ">=14.2.0" },
|
| 718 |
{ name = "sentencepiece" },
|
| 719 |
+
{ name = "tabulate", specifier = ">=0.9.0" },
|
| 720 |
{ name = "tokenizers", specifier = ">=0.15.0" },
|
| 721 |
{ name = "tqdm" },
|
| 722 |
{ name = "transformers" },
|
|
|
|
| 1307 |
{ url = "https://files.pythonhosted.org/packages/be/72/2db2f49247d0a18b4f1bb9a5a39a0162869acf235f3a96418363947b3d46/starlette-0.48.0-py3-none-any.whl", hash = "sha256:0764ca97b097582558ecb498132ed0c7d942f233f365b86ba37770e026510659", size = 73736, upload-time = "2025-09-13T08:41:03.869Z" },
|
| 1308 |
]
|
| 1309 |
|
| 1310 |
+
[[package]]
|
| 1311 |
+
name = "tabulate"
|
| 1312 |
+
version = "0.9.0"
|
| 1313 |
+
source = { registry = "https://pypi.org/simple" }
|
| 1314 |
+
sdist = { url = "https://files.pythonhosted.org/packages/ec/fe/802052aecb21e3797b8f7902564ab6ea0d60ff8ca23952079064155d1ae1/tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c", size = 81090, upload-time = "2022-10-06T17:21:48.54Z" }
|
| 1315 |
+
wheels = [
|
| 1316 |
+
{ url = "https://files.pythonhosted.org/packages/40/44/4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854/tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f", size = 35252, upload-time = "2022-10-06T17:21:44.262Z" },
|
| 1317 |
+
]
|
| 1318 |
+
|
| 1319 |
[[package]]
|
| 1320 |
name = "tokenizers"
|
| 1321 |
version = "0.22.1"
|