import streamlit as st import os import re import cv2 import fitz # PyMuPDF import pytesseract import numpy as np from typing import List, Dict, Tuple, Optional from concurrent.futures import ThreadPoolExecutor import sys from pathlib import Path import tempfile import zipfile import io class PDFExtractor: def __init__(self): # Configuration (same as original) self.config = { 'dpi': 400, 'min_area_ratio': 0.02, 'max_area_ratio': 0.96, 'min_width_px': 200, 'min_height_px': 220, 'inset_px': 6, 'stitch': { 'y_tol': 60, 'h_tol': 120, 'x_tol': 60, 'w_tol': 120, }, 'caption_regex': r"^\s*(?:Figure|Fig\.?|Panel|Table)\s*[\dA-Za-z\-\.]*", 'ocr_lang': 'eng', 'rotate_on_demand': False, 'debug_mode': False, 'max_caption_search_pages_ahead': 1, } self.setup_tesseract() def setup_tesseract(self): """Try to find Tesseract executable""" possible_paths = [ r'C:\Program Files\Tesseract-OCR\tesseract.exe', r'C:\Program Files (x86)\Tesseract-OCR\tesseract.exe', '/usr/bin/tesseract', '/usr/local/bin/tesseract', 'tesseract' # If in PATH ] for path in possible_paths: try: if os.path.exists(path) or path == 'tesseract': pytesseract.pytesseract.tesseract_cmd = path # Test if it works test_img = np.ones((50, 50, 3), dtype=np.uint8) * 255 pytesseract.image_to_string(test_img) return True except: continue return False def process_single_pdf(self, pdf_path: str, out_dir: str): """Process a single PDF file (adapted from original code)""" if not os.path.isfile(pdf_path): raise FileNotFoundError(f"PDF not found: {pdf_path}") os.makedirs(out_dir, exist_ok=True) try: doc = fitz.open(pdf_path) except Exception as e: raise Exception(f"Error opening PDF: {e}") detections_by_page = [] total_pages = len(doc) # Progress tracking for Streamlit if hasattr(self, 'progress_callback'): self.progress_callback(f"Analyzing {total_pages} pages...") for pno, page in enumerate(doc): img = self.render_page_to_bgr(page, self.config['dpi']) boxes, _ = self.detect_boxes_on_image( img, min_area_ratio=self.config['min_area_ratio'], max_area_ratio=self.config['max_area_ratio'], min_w=self.config['min_width_px'], min_h=self.config['min_height_px'], inset_px=self.config['inset_px'], debug_overlay=self.config['debug_mode'], ) for b in boxes: b['page'] = pno detections_by_page.append(boxes) if hasattr(self, 'progress_callback'): self.progress_callback(f" - Page {pno+1}: {len(boxes)} region(s)") doc.close() self.classify_boxes_with_ocr(detections_by_page, self.config['ocr_lang']) figures = self.stitch_split_figures(detections_by_page) self.save_results(figures, detections_by_page, out_dir) # Original algorithm methods (adapted for the class) def render_page_to_bgr(self, page: fitz.Page, dpi: int) -> np.ndarray: mat = fitz.Matrix(dpi / 72.0, dpi / 72.0) pix = page.get_pixmap(matrix=mat, alpha=False) img_bytes = pix.tobytes("png") arr = np.frombuffer(img_bytes, np.uint8) img = cv2.imdecode(arr, cv2.IMREAD_COLOR) return img def detect_boxes_on_image(self, img: np.ndarray, min_area_ratio: float, max_area_ratio: float, min_w: int, min_h: int, inset_px: int, debug_overlay: bool = False ) -> Tuple[List[Dict], Optional[np.ndarray]]: H, W = img.shape[:2] page_area = W * H gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) bw = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 21, 12) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) closed = cv2.morphologyEx(bw, cv2.MORPH_CLOSE, kernel, iterations=2) contours, _ = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) boxes: List[Dict] = [] for cnt in contours: peri = cv2.arcLength(cnt, True) if peri < 80: continue approx = cv2.approxPolyDP(cnt, 0.02 * peri, True) x, y, w, h = cv2.boundingRect(approx) if w < min_w or h < min_h: continue area = w * h area_ratio = area / page_area if not (min_area_ratio <= area_ratio <= max_area_ratio): continue if (w / (h + 1e-6) > 12) or (h / (w + 1e-6) > 12): continue mask = np.zeros((H, W), dtype=np.uint8) cv2.drawContours(mask, [approx], -1, 255, -1) def edge_present(slice_arr: np.ndarray) -> bool: if slice_arr.size == 0: return False return (np.mean(slice_arr) > 20) edge_thickness = 8 top_slice = mask[y:y+edge_thickness, x:x+w] if y+edge_thickness < H else mask[y:H, x:x+w] bottom_slice = mask[max(0, y+h-edge_thickness):y+h, x:x+w] left_slice = mask[y:y+h, x:x+edge_thickness] if x+edge_thickness < W else mask[y:y+h, x:W] right_slice = mask[y:y+h, max(0, x+w-edge_thickness):x+w] top_edge = edge_present(top_slice) bottom_edge = edge_present(bottom_slice) left_edge = edge_present(left_slice) right_edge = edge_present(right_slice) open_sides = [] if not top_edge: open_sides.append("top") if not bottom_edge: open_sides.append("bottom") if not left_edge: open_sides.append("left") if not right_edge: open_sides.append("right") x1 = max(0, x + inset_px) y1 = max(0, y + inset_px) x2 = min(W, x + w - inset_px) y2 = min(H, y + h - inset_px) if x2 <= x1 or y2 <= y1: continue crop = img[y1:y2, x1:x2].copy() box = { 'coords': (x, y, w, h), 'image': crop, 'open_sides': open_sides, 'area_ratio': float(area_ratio), } boxes.append(box) boxes.sort(key=lambda b: (b['coords'][1], b['coords'][0])) return boxes, None def ocr_text(self, image: np.ndarray, lang: str) -> str: try: txt = pytesseract.image_to_string(image, lang=lang) except Exception: txt = "" return (txt or "").strip() def classify_boxes_with_ocr(self, detections_by_page: List[List[Dict]], lang: str) -> None: caption_re = re.compile(self.config['caption_regex'], re.IGNORECASE) jobs = [] with ThreadPoolExecutor(max_workers=os.cpu_count() or 4) as ex: for p_idx, page_boxes in enumerate(detections_by_page): for b_idx, box in enumerate(page_boxes): jobs.append(((p_idx, b_idx), ex.submit(self.ocr_text, box['image'], lang))) for (p_idx, b_idx), fut in jobs: text = fut.result() or "" box = detections_by_page[p_idx][b_idx] if caption_re.match(text): box['type'] = 'caption' box['text'] = text else: box['type'] = 'figure' box['text'] = text def stitch_split_figures(self, detections_by_page: List[List[Dict]]) -> List[Dict]: # Mark boxes with IDs and stitch flags for p_idx, page_boxes in enumerate(detections_by_page): for b_idx, box in enumerate(page_boxes): box['id'] = f"p{p_idx+1}_b{b_idx+1}" box['used_for_stitch'] = False figures: List[Dict] = [] for p_idx, page_boxes in enumerate(detections_by_page): for b_idx, box in enumerate(page_boxes): if box.get('type') == 'caption': continue if box['used_for_stitch']: continue cur_img = box['image'] cur_coords = box['coords'] pages = [p_idx] bbox_refs = [(p_idx, b_idx)] box['used_for_stitch'] = True np_idx = p_idx + 1 candidate = None if np_idx < len(detections_by_page): for nb_idx, nb in enumerate(detections_by_page[np_idx]): if nb.get('type') == 'caption' or nb['used_for_stitch']: continue x, y, w, h = cur_coords nx, ny, nw, nh = nb['coords'] if abs(x - nx) < 50 and abs((x+w) - (nx+nw)) < 50: candidate = (np_idx, nb_idx, nb, 'vertical') break if abs(y - ny) < 50 and abs((y+h) - (ny+nh)) < 50: candidate = (np_idx, nb_idx, nb, 'horizontal') break if candidate: np_idx, nb_idx, nb, stitch_type = candidate nb['used_for_stitch'] = True pages.append(np_idx) bbox_refs.append((np_idx, nb_idx)) if stitch_type == 'vertical': w_max = max(cur_img.shape[1], nb['image'].shape[1]) def pad_to_width(img, target_w): pad_w = target_w - img.shape[1] if pad_w <= 0: return img return np.pad(img, ((0,0),(0,pad_w),(0,0)), mode="constant", constant_values=255) cur_img = pad_to_width(cur_img, w_max) nb_img = pad_to_width(nb['image'], w_max) cur_img = np.vstack([cur_img, nb_img]) x1 = min(cur_coords[0], nb['coords'][0]) y1 = min(cur_coords[1], nb['coords'][1]) x2 = max(cur_coords[0]+cur_coords[2], nb['coords'][0]+nb['coords'][2]) y2 = max(cur_coords[1]+cur_coords[3], nb['coords'][1]+nb['coords'][3]) cur_coords = (x1, y1, x2-x1, y2-y1) else: # horizontal h_max = max(cur_img.shape[0], nb['image'].shape[0]) def pad_to_height(img, target_h): pad_h = target_h - img.shape[0] if pad_h <= 0: return img return np.pad(img, ((0,pad_h),(0,0),(0,0)), mode="constant", constant_values=255) cur_img = pad_to_height(cur_img, h_max) nb_img = pad_to_height(nb['image'], h_max) cur_img = np.hstack([cur_img, nb_img]) x1 = min(cur_coords[0], nb['coords'][0]) y1 = min(cur_coords[1], nb['coords'][1]) x2 = max(cur_coords[0]+cur_coords[2], nb['coords'][0]+nb['coords'][2]) y2 = max(cur_coords[1]+cur_coords[3], nb['coords'][1]+nb['coords'][3]) cur_coords = (x1, y1, x2-x1, y2-y1) figures.append({ 'id': f"f{len(figures)+1:03d}", 'pages': pages, 'image': cur_img, 'bbox_refs': bbox_refs, 'base_page': pages[0], 'coords_hint': cur_coords, }) return figures def pick_best_caption_for_figure(self, fig: Dict, detections_by_page: List[List[Dict]], used_caption_ids: set) -> Optional[Tuple[int, int, Dict]]: base_p = fig['base_page'] x, y, w, h = fig['coords_hint'] max_ahead = self.config['max_caption_search_pages_ahead'] candidates = [] for p in range(base_p, min(base_p + 1 + max_ahead, len(detections_by_page))): for b_idx, box in enumerate(detections_by_page[p]): if box.get('type') != 'caption': continue if box.get('caption_used_id'): continue bx, by, bw, bh = box['coords'] same_page = (p == base_p) after_figure = (not same_page) or (by >= y) if not after_figure: continue vdist = abs((by) - (y + h)) if same_page else 0 wdiff = abs(bw - w) score = vdist + 0.5 * wdiff candidates.append((score, p, b_idx, box)) if not candidates: return None candidates.sort(key=lambda t: t[0]) for _, p, b_idx, box in candidates: box_id = (p, b_idx) if box_id not in used_caption_ids: return (p, b_idx, box) return None def rotate_if_needed(self, img: np.ndarray) -> np.ndarray: if not self.config['rotate_on_demand']: return img h, w = img.shape[:2] if h > w * 1.2: return cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE) return img def save_results(self, figures: List[Dict], detections_by_page: List[List[Dict]], out_dir: str) -> None: os.makedirs(out_dir, exist_ok=True) used_captions = set() saved = 0 for fig in figures: cap = self.pick_best_caption_for_figure(fig, detections_by_page, used_captions) if cap is not None: p, b_idx, cap_box = cap used_captions.add((p, b_idx)) fig_img = fig['image'] cap_img = cap_box['image'] if cap_img.shape[1] != fig_img.shape[1]: new_h = int(cap_img.shape[0] * (fig_img.shape[1] / cap_img.shape[1])) cap_img = cv2.resize(cap_img, (fig_img.shape[1], new_h)) stitched = cv2.vconcat([fig_img, cap_img]) stitched = self.rotate_if_needed(stitched) fname = f"figure_with_caption_{fig['id']}.png" cv2.imwrite(os.path.join(out_dir, fname), stitched) saved += 1 else: fig_img = self.rotate_if_needed(fig['image']) fname = f"figure_{fig['id']}.png" cv2.imwrite(os.path.join(out_dir, fname), fig_img) saved += 1 cap_count = 0 for p_idx, page_boxes in enumerate(detections_by_page): for b_idx, box in enumerate(page_boxes): if box.get('type') == 'caption' and (p_idx, b_idx) not in used_captions: cap_count += 1 cv2.imwrite(os.path.join(out_dir, f"standalone_caption_{cap_count:03d}.png"), box['image']) if hasattr(self, 'progress_callback'): self.progress_callback(f"Saved {saved} figure image(s) (+ any standalone captions) to: {out_dir}") def main(): st.set_page_config( page_title="PDF Figure Extractor", page_icon="📄", layout="wide" ) # Custom CSS for better styling st.markdown(""" """, unsafe_allow_html=True) # Title st.markdown('

📄 PDF Figure Extractor

', unsafe_allow_html=True) st.markdown("---") # Initialize extractor in session state if 'extractor' not in st.session_state: st.session_state.extractor = PDFExtractor() tesseract_found = st.session_state.extractor.setup_tesseract() if not tesseract_found: st.info("â„šī¸ **Tesseract OCR not detected.** " "Caption detection will be limited. " "For local development, install Tesseract from: " "https://github.com/UB-Mannheim/tesseract/wiki") # Sidebar for settings with st.sidebar: st.header("âš™ī¸ Settings") dpi = st.slider( "Image Quality (DPI)", min_value=150, max_value=600, value=400, step=50, help="Higher DPI means better quality but slower processing" ) rotate_images = st.checkbox( "Auto-rotate tall images", value=False, help="Automatically rotate images that are taller than they are wide" ) st.markdown("---") st.markdown("### About") st.markdown(""" This tool extracts figures and captions from PDF files using: - **Computer Vision** for figure detection - **OCR** for caption recognition - **Smart Stitching** for multi-page figures """) # Main content col1, col2 = st.columns([2, 1]) with col1: st.markdown('

1ī¸âƒŖ Upload PDF Files

', unsafe_allow_html=True) uploaded_files = st.file_uploader( "Choose PDF files", type=['pdf'], accept_multiple_files=True, help="Select one or more PDF files to extract figures from" ) if uploaded_files: st.success(f"✅ {len(uploaded_files)} PDF file(s) selected") for i, file in enumerate(uploaded_files, 1): st.text(f" {i}. {file.name}") else: # Show welcome message when no files uploaded st.info(""" 👋 **Welcome!** Upload your PDF files to get started. This tool will: - 🔍 Detect figures, charts, and diagrams - 📝 Extract and match captions - 🔄 Stitch multi-page figures - 💾 Package everything for easy download """) with col2: st.markdown('

2ī¸âƒŖ Process

', unsafe_allow_html=True) process_button = st.button( "🚀 Extract Figures", type="primary", disabled=not uploaded_files, use_container_width=True ) # Processing section if process_button and uploaded_files: st.markdown("---") st.markdown('

📊 Processing Status

', unsafe_allow_html=True) # Update config st.session_state.extractor.config['dpi'] = dpi st.session_state.extractor.config['rotate_on_demand'] = rotate_images # Progress tracking progress_bar = st.progress(0) status_text = st.empty() def log_callback(message): pass # Silent processing st.session_state.extractor.progress_callback = log_callback # Create temporary directory for output with tempfile.TemporaryDirectory() as temp_dir: total_files = len(uploaded_files) all_results = [] for i, uploaded_file in enumerate(uploaded_files): # Update progress progress = i / total_files progress_bar.progress(progress) status_text.markdown(f"**Processing:** {uploaded_file.name} ({i+1}/{total_files})") # Save uploaded file temporarily temp_pdf_path = os.path.join(temp_dir, uploaded_file.name) with open(temp_pdf_path, 'wb') as f: f.write(uploaded_file.getbuffer()) # Create output directory for this PDF pdf_name = os.path.splitext(uploaded_file.name)[0] out_dir = os.path.join(temp_dir, pdf_name) try: st.session_state.extractor.process_single_pdf(temp_pdf_path, out_dir) # Collect results if os.path.exists(out_dir): for filename in os.listdir(out_dir): if filename.endswith('.png'): filepath = os.path.join(out_dir, filename) all_results.append((pdf_name, filename, filepath)) except Exception as e: st.error(f"Error processing {uploaded_file.name}: {str(e)}") # Complete progress progress_bar.progress(1.0) status_text.markdown("**✅ Processing completed!**") # Display results if all_results: st.markdown("---") st.markdown('

🎉 Extraction Results

', unsafe_allow_html=True) st.success(f"Successfully extracted {len(all_results)} figure(s) from {total_files} PDF(s)") # Group by PDF results_by_pdf = {} for pdf_name, filename, filepath in all_results: if pdf_name not in results_by_pdf: results_by_pdf[pdf_name] = [] results_by_pdf[pdf_name].append((filename, filepath)) # Display results by PDF with auto-expanded previews for pdf_name, files in results_by_pdf.items(): st.markdown(f"### 📄 {pdf_name} ({len(files)} figures)") # Display images in columns cols = st.columns(3) for idx, (filename, filepath) in enumerate(files): with cols[idx % 3]: st.image(filepath, caption=filename, use_container_width=True) # Create download button for all results (placed after previews) st.markdown("---") zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file: for pdf_name, filename, filepath in all_results: arcname = f"{pdf_name}/{filename}" zip_file.write(filepath, arcname) zip_buffer.seek(0) st.download_button( label="đŸ“Ĩ Download All Figures (ZIP)", data=zip_buffer, file_name="extracted_figures.zip", mime="application/zip", use_container_width=True, type="primary" ) else: st.warning("No figures were extracted. The PDFs may not contain detectable figures.") # Footer st.markdown("---") st.markdown( """

Made with â¤ī¸ using Streamlit | GitHub | Need help? Check the processing log for details

""", unsafe_allow_html=True ) if __name__ == "__main__": main()