Spaces:
Sleeping
Sleeping
File size: 17,505 Bytes
57dd157 c218a7a d6148dc 8aa4e70 a87268f 8aa4e70 9fa1e15 8aa4e70 710031b 8aa4e70 710031b 8aa4e70 710031b 8aa4e70 ca4110a 8aa4e70 ca4110a 8aa4e70 2ac229b 8aa4e70 2ac229b 8aa4e70 2ac229b 8aa4e70 2ac229b 8aa4e70 2ac229b 8aa4e70 2ac229b 8aa4e70 2ac229b 8aa4e70 2ac229b 8aa4e70 9085499 8aa4e70 9085499 8aa4e70 9085499 422dcf7 8aa4e70 9085499 8aa4e70 9085499 ca4110a 8aa4e70 ca4110a 8aa4e70 422dcf7 8aa4e70 3c0bfa8 8aa4e70 3c0bfa8 8aa4e70 2bd7691 b427362 3c0bfa8 b427362 2bd7691 b427362 2bd7691 b427362 7f2f72d 3c0bfa8 7f2f72d 3c0bfa8 7f2f72d 3c0bfa8 7f2f72d 3c0bfa8 7f2f72d 3c0bfa8 7f2f72d 8aa4e70 b427362 8aa4e70 710031b 8aa4e70 d6148dc 8aa4e70 3c0bfa8 8aa4e70 3c0bfa8 8aa4e70 3c0bfa8 8aa4e70 3c0bfa8 8aa4e70 d6148dc 8aa4e70 c8515c9 710031b 8aa4e70 a87268f 3c22c56 3c0bfa8 a87268f 3c22c56 c218a7a 3c22c56 2ac229b 3c22c56 70985c2 ca4110a 8aa4e70 c218a7a fad1ae6 8aa4e70 d6148dc 8aa4e70 c218a7a 4f20247 be24fe4 c218a7a d6148dc 8aa4e70 be24fe4 c218a7a 57dd157 feab9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import gradio as gr
import pandas as pd
import numpy as np
import re
from playwright.sync_api import sync_playwright
import time
import os
import subprocess
import sys
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from windrose import WindroseAxes
from datetime import datetime
# Install Playwright browsers on startup
def install_playwright_browsers():
try:
if not os.path.exists('/home/user/.cache/ms-playwright'):
print("Installing Playwright browsers...")
subprocess.run(
[sys.executable, "-m", "playwright", "install", "chromium"],
check=True,
capture_output=True,
text=True
)
print("Playwright browsers installed successfully")
except Exception as e:
print(f"Error installing browsers: {e}")
# Install browsers when the module loads
install_playwright_browsers()
def scrape_weather_data(site_id, hours=720):
"""Scrape weather data from weather.gov timeseries"""
url = f"https://www.weather.gov/wrh/timeseries?site={site_id}&hours={hours}&units=english&chart=on&headers=on&obs=tabular&hourly=false&pview=full&font=12&plot="
try:
with sync_playwright() as p:
browser = p.chromium.launch(
headless=True,
args=['--no-sandbox', '--disable-dev-shm-usage']
)
context = browser.new_context(
user_agent='Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
)
page = context.new_page()
response = page.goto(url, timeout=60000)
print(f"Response status: {response.status}")
# Wait for table to load with longer timeout
page.wait_for_selector('table', timeout=45000)
time.sleep(8) # Give more time for dynamic content
print("Extracting data...")
content = page.evaluate('''() => {
const getTextContent = () => {
const rows = [];
const tables = document.getElementsByTagName('table');
console.log(`Found ${tables.length} tables`);
for (const table of tables) {
const text = table.textContent;
// Look for Date/Time or just Date as header
if (text.includes('Date/Time') || text.includes('Date')) {
const headerRow = Array.from(table.querySelectorAll('th'))
.map(th => th.textContent.trim());
console.log('Headers:', headerRow);
const dataRows = Array.from(table.querySelectorAll('tbody tr'))
.map(row => Array.from(row.querySelectorAll('td'))
.map(td => td.textContent.trim()));
console.log(`Found ${dataRows.length} data rows`);
if (dataRows.length > 0) {
return {headers: headerRow, rows: dataRows};
}
}
}
return null;
};
return getTextContent();
}''')
print(f"Found {len(content['rows'] if content else [])} rows of data")
browser.close()
if not content or not content.get('rows'):
raise ValueError(f"No data found for station {site_id}. Station may not exist or may not be reporting.")
return content
except Exception as e:
error_msg = f"Error scraping data for {site_id}: {str(e)}"
print(error_msg)
raise ValueError(error_msg)
def parse_date(date_str):
"""Parse date string to datetime"""
try:
current_year = datetime.now().year
return pd.to_datetime(f"{date_str}, {current_year}", format="%b %d, %I:%M %p, %Y")
except:
return pd.NaT
def parse_weather_data(data):
"""Parse the weather data into a pandas DataFrame"""
if not data or 'rows' not in data:
raise ValueError("No valid weather data found")
df = pd.DataFrame(data['rows'])
# Different stations have different numbers of columns
# Standard columns we expect (in order)
expected_columns = ['datetime', 'temp', 'dew_point', 'humidity', 'wind_chill',
'wind_dir', 'wind_speed', 'snow_depth', 'snowfall_3hr',
'snowfall_6hr', 'snowfall_24hr', 'swe']
# Get actual number of columns
num_cols = len(df.columns)
print(f"Data has {num_cols} columns")
# Assign column names based on actual number of columns
if num_cols <= len(expected_columns):
df.columns = expected_columns[:num_cols]
# Add missing columns with NaN values
for col in expected_columns[num_cols:]:
df[col] = np.nan
else:
# If more columns than expected, just use the first 12
df = df.iloc[:, :12]
df.columns = expected_columns
numeric_cols = ['temp', 'dew_point', 'humidity', 'wind_chill', 'snow_depth',
'snowfall_3hr', 'snowfall_6hr', 'snowfall_24hr', 'swe']
for col in numeric_cols:
df[col] = pd.to_numeric(df[col], errors='coerce')
def parse_wind(x):
if pd.isna(x): return np.nan, np.nan
match = re.search(r'(\d+)G(\d+)', str(x))
if match:
return float(match.group(1)), float(match.group(2))
try:
return float(x), np.nan
except:
return np.nan, np.nan
wind_data = df['wind_speed'].apply(parse_wind)
df['wind_speed'] = wind_data.apply(lambda x: x[0])
df['wind_gust'] = wind_data.apply(lambda x: x[1])
def parse_direction(direction):
direction_map = {
'N': 0, 'NNE': 22.5, 'NE': 45, 'ENE': 67.5,
'E': 90, 'ESE': 112.5, 'SE': 135, 'SSE': 157.5,
'S': 180, 'SSW': 202.5, 'SW': 225, 'WSW': 247.5,
'W': 270, 'WNW': 292.5, 'NW': 315, 'NNW': 337.5
}
return direction_map.get(direction, np.nan)
df['wind_dir_deg'] = df['wind_dir'].apply(parse_direction)
df['datetime'] = df['datetime'].apply(parse_date)
df['date'] = df['datetime'].dt.date
return df
def calculate_total_new_snow(df):
"""
Calculate total new snow by:
1. Using ONLY the 3-hour snowfall amounts
2. Using 9 AM as the daily reset point
"""
# Sort by datetime to ensure correct calculation
df = df.sort_values('datetime')
# Create a copy of the dataframe with ONLY datetime and 3-hour snowfall
snow_df = df[['datetime', 'snowfall_3hr']].copy()
# Create a day group that starts at 9 AM instead of midnight
snow_df['day_group'] = snow_df['datetime'].apply(
lambda x: x.date() if x.hour >= 9 else (x - pd.Timedelta(days=1)).date()
)
# Calculate daily snow totals
daily_totals = snow_df.groupby('day_group').apply(process_daily_snow)
return daily_totals.sum()
def calculate_new_snow_from_depth(df):
"""
Calculate new snow from changes in snow depth.
More accurate than 3-hour readings which can be unreliable.
Uses 9 AM as the daily reset point.
"""
# Sort by datetime
df = df.sort_values('datetime').copy()
# Create day groups starting at 9 AM
df['day_group'] = df['datetime'].apply(
lambda x: x.date() if x.hour >= 9 else (x - pd.Timedelta(days=1)).date()
)
daily_snow_change = []
for day, group in df.groupby('day_group'):
group = group.sort_values('datetime')
valid_depths = group['snow_depth'].dropna()
if len(valid_depths) > 0:
# Get max depth increase for the day
max_depth = valid_depths.max()
min_depth = valid_depths.min()
# New snow is the increase in depth (ignore decreases from settling/melting)
new_snow = max(0, max_depth - min_depth)
daily_snow_change.append(new_snow)
return sum(daily_snow_change)
def calculate_daily_snow_from_depth(df):
"""Calculate daily new snow from depth changes, returns a dataframe"""
df = df.sort_values('datetime').copy()
df['day_group'] = df['datetime'].apply(
lambda x: x.date() if x.hour >= 9 else (x - pd.Timedelta(days=1)).date()
)
daily_data = []
for day, group in df.groupby('day_group'):
group = group.sort_values('datetime')
valid_depths = group['snow_depth'].dropna()
if len(valid_depths) > 0:
max_depth = valid_depths.max()
min_depth = valid_depths.min()
new_snow = max(0, max_depth - min_depth)
daily_data.append({'date': day, 'new_snow_from_depth': new_snow})
return pd.DataFrame(daily_data)
def process_daily_snow(group):
"""Sum up ONLY the 3-hour snowfall amounts for each day period"""
# Sort by time to ensure proper sequence
group = group.sort_values('datetime')
# Sum only the valid 3-hour amounts, treating NaN as 0
valid_amounts = group['snowfall_3hr'].fillna(0)
daily_total = valid_amounts.sum()
return daily_total
def create_plots(df):
"""Create all weather plots including SWE estimates"""
# Create figure with adjusted height and spacing
fig = plt.figure(figsize=(20, 24))
# Calculate height ratios for different plots
height_ratios = [1, 1, 1, 1, 1] # Equal height for all plots
gs = GridSpec(5, 1, figure=fig, height_ratios=height_ratios)
gs.update(hspace=0.4) # Increase vertical spacing between plots
# Temperature plot
ax1 = fig.add_subplot(gs[0])
ax1.plot(df['datetime'], df['temp'], label='Temperature', color='red')
ax1.plot(df['datetime'], df['wind_chill'], label='Wind Chill', color='blue')
ax1.set_title('Temperature and Wind Chill Over Time', pad=20)
ax1.set_xlabel('Date')
ax1.set_ylabel('Temperature (°F)')
ax1.legend()
ax1.grid(True)
ax1.tick_params(axis='x', rotation=45)
# Wind speed plot
ax2 = fig.add_subplot(gs[1])
ax2.plot(df['datetime'], df['wind_speed'], label='Wind Speed', color='blue')
ax2.plot(df['datetime'], df['wind_gust'], label='Wind Gust', color='orange')
ax2.set_title('Wind Speed and Gusts Over Time', pad=20)
ax2.set_xlabel('Date')
ax2.set_ylabel('Wind Speed (mph)')
ax2.legend()
ax2.grid(True)
ax2.tick_params(axis='x', rotation=45)
# Snow depth plot
ax3 = fig.add_subplot(gs[2])
ax3.plot(df['datetime'], df['snow_depth'], color='blue', label='Snow Depth')
ax3.set_title('Snow Depth Over Time', pad=20)
ax3.set_xlabel('Date')
ax3.set_ylabel('Snow Depth (inches)')
ax3.grid(True)
ax3.tick_params(axis='x', rotation=45)
# Daily new snow comparison plot - showing both methods
ax4 = fig.add_subplot(gs[3])
# Calculate from 3-hour reports
snow_df = df[['datetime', 'snowfall_3hr']].copy()
snow_df['day_group'] = snow_df['datetime'].apply(
lambda x: x.date() if x.hour >= 9 else (x - pd.Timedelta(days=1)).date()
)
daily_snow_3hr = snow_df.groupby('day_group').apply(process_daily_snow).reset_index()
daily_snow_3hr.columns = ['date', 'new_snow_3hr']
# Calculate from depth changes
daily_snow_depth = calculate_daily_snow_from_depth(df)
# Merge the two calculations
daily_combined = pd.merge(daily_snow_3hr, daily_snow_depth, on='date', how='outer').fillna(0)
# Create grouped bar chart
x = range(len(daily_combined))
width = 0.35
bars1 = ax4.bar([i - width/2 for i in x], daily_combined['new_snow_3hr'],
width, label='3-Hour Reports', color='skyblue', alpha=0.8)
bars2 = ax4.bar([i + width/2 for i in x], daily_combined['new_snow_from_depth'],
width, label='Snow Depth Change', color='darkblue', alpha=0.8)
ax4.set_title('Daily New Snow - Two Methods (9 AM Reset)', pad=20, fontsize=12, fontweight='bold')
ax4.set_xlabel('Date')
ax4.set_ylabel('New Snow (inches)')
ax4.set_xticks(x)
ax4.set_xticklabels([str(d) for d in daily_combined['date']], rotation=45, ha='right')
ax4.legend()
ax4.grid(True, axis='y', linestyle='--', alpha=0.7)
# Add value labels on bars
for bars in [bars1, bars2]:
for bar in bars:
height = bar.get_height()
if height > 0:
ax4.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.1f}"', ha='center', va='bottom', fontsize=8)
# SWE bar plot
ax5 = fig.add_subplot(gs[4])
daily_swe = df.groupby('date')['swe'].mean()
ax5.bar(daily_swe.index, daily_swe.values, color='lightblue')
ax5.set_title('Snow/Water Equivalent', pad=20)
ax5.set_xlabel('Date')
ax5.set_ylabel('SWE (inches)')
ax5.tick_params(axis='x', rotation=45)
# Adjust layout
plt.subplots_adjust(top=0.95, bottom=0.05, left=0.1, right=0.95)
# Create separate wind rose figure
fig_rose = plt.figure(figsize=(10, 10))
ax_rose = WindroseAxes.from_ax(fig=fig_rose)
create_wind_rose(df, ax_rose)
fig_rose.subplots_adjust(top=0.95, bottom=0.05, left=0.1, right=0.95)
return fig, fig_rose
def create_wind_rose(df, ax):
"""Create a wind rose plot"""
if not isinstance(ax, WindroseAxes):
ax = WindroseAxes.from_ax(ax=ax)
ax.bar(df['wind_dir_deg'].dropna(), df['wind_speed'].dropna(),
bins=np.arange(0, 40, 5), normed=True, opening=0.8, edgecolor='white')
ax.set_legend(title='Wind Speed (mph)')
ax.set_title('Wind Rose')
def analyze_weather_data(site_id, hours):
"""Analyze weather data and create visualizations"""
try:
print(f"Scraping data for {site_id}...")
raw_data = scrape_weather_data(site_id, hours)
if not raw_data:
return "Error: Could not retrieve weather data.", None, None
print("Parsing data...")
df = parse_weather_data(raw_data)
# Calculate total new snow using both methods
total_new_snow_3hr = calculate_total_new_snow(df)
total_new_snow_depth = calculate_new_snow_from_depth(df)
current_swe = df['swe'].iloc[0] # Get most recent SWE measurement
print("Calculating statistics...")
stats = {
'Temperature Range': f"{df['temp'].min():.1f}°F to {df['temp'].max():.1f}°F",
'Average Temperature': f"{df['temp'].mean():.1f}°F",
'Max Wind Speed': f"{df['wind_speed'].max():.1f} mph",
'Max Wind Gust': f"{df['wind_gust'].max():.1f} mph",
'Average Humidity': f"{df['humidity'].mean():.1f}%",
'Current Snow Depth': f"{df['snow_depth'].iloc[0]:.1f} inches",
'Total New Snow (3-hr reports)': f"{total_new_snow_3hr:.1f} inches",
'Total New Snow (depth change)': f"{total_new_snow_depth:.1f} inches",
'Current Snow/Water Equivalent': f"{current_swe:.2f} inches"
}
html_output = "<div style='font-size: 16px; line-height: 1.5;'>"
html_output += f"<p><strong>Weather Station:</strong> {site_id}</p>"
html_output += f"<p><strong>Data Range:</strong> {df['datetime'].min().strftime('%Y-%m-%d %H:%M')} to {df['datetime'].max().strftime('%Y-%m-%d %H:%M')}</p>"
for key, value in stats.items():
html_output += f"<p><strong>{key}:</strong> {value}</p>"
html_output += "</div>"
print("Creating plots...")
main_plots, wind_rose = create_plots(df)
return html_output, main_plots, wind_rose
except Exception as e:
print(f"Error in analysis: {str(e)}")
return f"Error analyzing data: {str(e)}", None, None
# Create Gradio interface
with gr.Blocks(title="Weather Station Data Analyzer") as demo:
gr.Markdown("# Weather Station Data Analyzer")
gr.Markdown("""
Select a weather station and number of hours to analyze.
**New Snow Calculation Methods:**
- **3-Hour Reports**: Sum of reported 3-hour snowfall amounts
- **Depth Change**: Calculated from snow depth increases (generally more accurate)
""")
with gr.Row():
site_id = gr.Dropdown(
label="Weather Station",
choices=[
("Yellowstone Club - Timberline", "YCTIM"),
("Yellowstone Club - Andesite", "YCAND"),
("Yellowstone Club - American Spirit", "YCAMS"),
("Yellowstone Club - Base", "YCBAS"),
("Yellowstone Club - Great Bear", "YCGBR"),
("Bozeman Airport", "KBZN"),
("Salt Lake City", "KSLC")
],
value="YCTIM"
)
hours = gr.Number(
label="Hours of Data",
value=720,
minimum=1,
maximum=1440
)
analyze_btn = gr.Button("Fetch and Analyze Weather Data")
with gr.Row():
stats_output = gr.HTML(label="Statistics")
with gr.Row():
weather_plots = gr.Plot(label="Weather Plots")
wind_rose = gr.Plot(label="Wind Rose")
analyze_btn.click(
fn=analyze_weather_data,
inputs=[site_id, hours],
outputs=[stats_output, weather_plots, wind_rose]
)
if __name__ == "__main__":
demo.launch() |