nakas's picture
Add all Yellowstone Club snow stations to dropdown
3c22c56
raw
history blame
13.4 kB
import gradio as gr
import pandas as pd
import numpy as np
import re
from playwright.sync_api import sync_playwright
import time
import os
import subprocess
import sys
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from windrose import WindroseAxes
from datetime import datetime
# Install Playwright browsers on startup
def install_playwright_browsers():
try:
if not os.path.exists('/home/user/.cache/ms-playwright'):
print("Installing Playwright browsers...")
subprocess.run(
[sys.executable, "-m", "playwright", "install", "chromium"],
check=True,
capture_output=True,
text=True
)
print("Playwright browsers installed successfully")
except Exception as e:
print(f"Error installing browsers: {e}")
# Install browsers when the module loads
install_playwright_browsers()
def scrape_weather_data(site_id, hours=720):
"""Scrape weather data from weather.gov timeseries"""
url = f"https://www.weather.gov/wrh/timeseries?site={site_id}&hours={hours}&units=english&chart=on&headers=on&obs=tabular&hourly=false&pview=full&font=12&plot="
try:
with sync_playwright() as p:
browser = p.chromium.launch(
headless=True,
args=['--no-sandbox', '--disable-dev-shm-usage']
)
context = browser.new_context(
user_agent='Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
)
page = context.new_page()
response = page.goto(url)
print(f"Response status: {response.status}")
page.wait_for_selector('table', timeout=30000)
time.sleep(5)
print("Extracting data...")
content = page.evaluate('''() => {
const getTextContent = () => {
const rows = [];
const tables = document.getElementsByTagName('table');
for (const table of tables) {
if (table.textContent.includes('Date/Time')) {
const headerRow = Array.from(table.querySelectorAll('th'))
.map(th => th.textContent.trim());
const dataRows = Array.from(table.querySelectorAll('tbody tr'))
.map(row => Array.from(row.querySelectorAll('td'))
.map(td => td.textContent.trim()));
return {headers: headerRow, rows: dataRows};
}
}
return null;
};
return getTextContent();
}''')
print(f"Found {len(content['rows'] if content else [])} rows of data")
browser.close()
return content
except Exception as e:
print(f"Error scraping data: {str(e)}")
raise e
def parse_date(date_str):
"""Parse date string to datetime"""
try:
current_year = datetime.now().year
return pd.to_datetime(f"{date_str}, {current_year}", format="%b %d, %I:%M %p, %Y")
except:
return pd.NaT
def parse_weather_data(data):
"""Parse the weather data into a pandas DataFrame"""
if not data or 'rows' not in data:
raise ValueError("No valid weather data found")
df = pd.DataFrame(data['rows'])
columns = ['datetime', 'temp', 'dew_point', 'humidity', 'wind_chill',
'wind_dir', 'wind_speed', 'snow_depth', 'snowfall_3hr',
'snowfall_6hr', 'snowfall_24hr', 'swe']
df = df.iloc[:, :12]
df.columns = columns
numeric_cols = ['temp', 'dew_point', 'humidity', 'wind_chill', 'snow_depth',
'snowfall_3hr', 'snowfall_6hr', 'snowfall_24hr', 'swe']
for col in numeric_cols:
df[col] = pd.to_numeric(df[col], errors='coerce')
def parse_wind(x):
if pd.isna(x): return np.nan, np.nan
match = re.search(r'(\d+)G(\d+)', str(x))
if match:
return float(match.group(1)), float(match.group(2))
try:
return float(x), np.nan
except:
return np.nan, np.nan
wind_data = df['wind_speed'].apply(parse_wind)
df['wind_speed'] = wind_data.apply(lambda x: x[0])
df['wind_gust'] = wind_data.apply(lambda x: x[1])
def parse_direction(direction):
direction_map = {
'N': 0, 'NNE': 22.5, 'NE': 45, 'ENE': 67.5,
'E': 90, 'ESE': 112.5, 'SE': 135, 'SSE': 157.5,
'S': 180, 'SSW': 202.5, 'SW': 225, 'WSW': 247.5,
'W': 270, 'WNW': 292.5, 'NW': 315, 'NNW': 337.5
}
return direction_map.get(direction, np.nan)
df['wind_dir_deg'] = df['wind_dir'].apply(parse_direction)
df['datetime'] = df['datetime'].apply(parse_date)
df['date'] = df['datetime'].dt.date
return df
def calculate_total_new_snow(df):
"""
Calculate total new snow by:
1. Using ONLY the 3-hour snowfall amounts
2. Using 9 AM as the daily reset point
3. Filtering out obvious anomalies (>9 inches in 3 hours)
"""
# Sort by datetime to ensure correct calculation
df = df.sort_values('datetime')
# Create a copy of the dataframe with ONLY datetime and 3-hour snowfall
snow_df = df[['datetime', 'snowfall_3hr']].copy()
# Create a day group that starts at 9 AM instead of midnight
snow_df['day_group'] = snow_df['datetime'].apply(
lambda x: x.date() if x.hour >= 9 else (x - pd.Timedelta(days=1)).date()
)
# Calculate daily snow totals
daily_totals = snow_df.groupby('day_group').apply(process_daily_snow)
return daily_totals.sum()
def process_daily_snow(group):
"""Sum up ONLY the 3-hour snowfall amounts for each day period"""
# Sort by time to ensure proper sequence
group = group.sort_values('datetime')
# Sum only the valid 3-hour amounts, treating NaN as 0
valid_amounts = group['snowfall_3hr'].fillna(0)
daily_total = valid_amounts.sum()
return daily_total
def create_plots(df):
"""Create all weather plots including SWE estimates"""
# Create figure with adjusted height and spacing
fig = plt.figure(figsize=(20, 24))
# Calculate height ratios for different plots
height_ratios = [1, 1, 1, 1, 1] # Equal height for all plots
gs = GridSpec(5, 1, figure=fig, height_ratios=height_ratios)
gs.update(hspace=0.4) # Increase vertical spacing between plots
# Temperature plot
ax1 = fig.add_subplot(gs[0])
ax1.plot(df['datetime'], df['temp'], label='Temperature', color='red')
ax1.plot(df['datetime'], df['wind_chill'], label='Wind Chill', color='blue')
ax1.set_title('Temperature and Wind Chill Over Time', pad=20)
ax1.set_xlabel('Date')
ax1.set_ylabel('Temperature (°F)')
ax1.legend()
ax1.grid(True)
ax1.tick_params(axis='x', rotation=45)
# Wind speed plot
ax2 = fig.add_subplot(gs[1])
ax2.plot(df['datetime'], df['wind_speed'], label='Wind Speed', color='blue')
ax2.plot(df['datetime'], df['wind_gust'], label='Wind Gust', color='orange')
ax2.set_title('Wind Speed and Gusts Over Time', pad=20)
ax2.set_xlabel('Date')
ax2.set_ylabel('Wind Speed (mph)')
ax2.legend()
ax2.grid(True)
ax2.tick_params(axis='x', rotation=45)
# Snow depth plot
ax3 = fig.add_subplot(gs[2])
ax3.plot(df['datetime'], df['snow_depth'], color='blue', label='Snow Depth')
ax3.set_title('Snow Depth Over Time', pad=20)
ax3.set_xlabel('Date')
ax3.set_ylabel('Snow Depth (inches)')
ax3.grid(True)
ax3.tick_params(axis='x', rotation=45)
# Daily new snow bar plot
ax4 = fig.add_subplot(gs[3])
snow_df = df[['datetime', 'snowfall_3hr']].copy()
snow_df['day_group'] = snow_df['datetime'].apply(
lambda x: x.date() if x.hour >= 9 else (x - pd.Timedelta(days=1)).date()
)
daily_snow = snow_df.groupby('day_group').apply(process_daily_snow).reset_index()
daily_snow.columns = ['date', 'new_snow']
# Create the bar plot
ax4.bar(daily_snow['date'], daily_snow['new_snow'], color='blue')
ax4.set_title('Daily New Snow (Sum of 3-hour amounts, 9 AM Reset)', pad=20)
ax4.set_xlabel('Date')
ax4.set_ylabel('New Snow (inches)')
ax4.tick_params(axis='x', rotation=45)
ax4.grid(True, axis='y', linestyle='--', alpha=0.7)
# Add value labels on top of each bar
for i, v in enumerate(daily_snow['new_snow']):
if v > 0: # Only label bars with snow
ax4.text(i, v, f'{v:.1f}"', ha='center', va='bottom')
# SWE bar plot
ax5 = fig.add_subplot(gs[4])
daily_swe = df.groupby('date')['swe'].mean()
ax5.bar(daily_swe.index, daily_swe.values, color='lightblue')
ax5.set_title('Snow/Water Equivalent', pad=20)
ax5.set_xlabel('Date')
ax5.set_ylabel('SWE (inches)')
ax5.tick_params(axis='x', rotation=45)
# Adjust layout
plt.subplots_adjust(top=0.95, bottom=0.05, left=0.1, right=0.95)
# Create separate wind rose figure
fig_rose = plt.figure(figsize=(10, 10))
ax_rose = WindroseAxes.from_ax(fig=fig_rose)
create_wind_rose(df, ax_rose)
fig_rose.subplots_adjust(top=0.95, bottom=0.05, left=0.1, right=0.95)
return fig, fig_rose
def create_wind_rose(df, ax):
"""Create a wind rose plot"""
if not isinstance(ax, WindroseAxes):
ax = WindroseAxes.from_ax(ax=ax)
ax.bar(df['wind_dir_deg'].dropna(), df['wind_speed'].dropna(),
bins=np.arange(0, 40, 5), normed=True, opening=0.8, edgecolor='white')
ax.set_legend(title='Wind Speed (mph)')
ax.set_title('Wind Rose')
def analyze_weather_data(site_id, hours):
"""Analyze weather data and create visualizations"""
try:
print(f"Scraping data for {site_id}...")
raw_data = scrape_weather_data(site_id, hours)
if not raw_data:
return "Error: Could not retrieve weather data.", None, None
print("Parsing data...")
df = parse_weather_data(raw_data)
# Calculate total new snow using the new method
total_new_snow = calculate_total_new_snow(df)
current_swe = df['swe'].iloc[0] # Get most recent SWE measurement
print("Calculating statistics...")
stats = {
'Temperature Range': f"{df['temp'].min():.1f}°F to {df['temp'].max():.1f}°F",
'Average Temperature': f"{df['temp'].mean():.1f}°F",
'Max Wind Speed': f"{df['wind_speed'].max():.1f} mph",
'Max Wind Gust': f"{df['wind_gust'].max():.1f} mph",
'Average Humidity': f"{df['humidity'].mean():.1f}%",
'Current Snow Depth': f"{df['snow_depth'].iloc[0]:.1f} inches",
'Total New Snow': f"{total_new_snow:.1f} inches",
'Current Snow/Water Equivalent': f"{current_swe:.2f} inches"
}
html_output = "<div style='font-size: 16px; line-height: 1.5;'>"
html_output += f"<p><strong>Weather Station:</strong> {site_id}</p>"
html_output += f"<p><strong>Data Range:</strong> {df['datetime'].min().strftime('%Y-%m-%d %H:%M')} to {df['datetime'].max().strftime('%Y-%m-%d %H:%M')}</p>"
for key, value in stats.items():
html_output += f"<p><strong>{key}:</strong> {value}</p>"
html_output += "</div>"
print("Creating plots...")
main_plots, wind_rose = create_plots(df)
return html_output, main_plots, wind_rose
except Exception as e:
print(f"Error in analysis: {str(e)}")
return f"Error analyzing data: {str(e)}", None, None
# Create Gradio interface
with gr.Blocks(title="Weather Station Data Analyzer") as demo:
gr.Markdown("# Weather Station Data Analyzer")
gr.Markdown("""
Select a weather station and number of hours to analyze.
""")
with gr.Row():
site_id = gr.Dropdown(
label="Weather Station",
choices=[
("Yellowstone Club - Timberline", "YCTIM"),
("Yellowstone Club - Andesite", "YCAND"),
("Yellowstone Club - American Spirit", "YCAMS"),
("Yellowstone Club - Base", "YCBAS"),
("Yellowstone Club - Great Bear", "YCGBR"),
("Bozeman Airport", "KBZN"),
("Salt Lake City", "KSLC")
],
value="YCTIM"
)
hours = gr.Number(
label="Hours of Data",
value=720,
minimum=1,
maximum=1440
)
analyze_btn = gr.Button("Fetch and Analyze Weather Data")
with gr.Row():
stats_output = gr.HTML(label="Statistics")
with gr.Row():
weather_plots = gr.Plot(label="Weather Plots")
wind_rose = gr.Plot(label="Wind Rose")
analyze_btn.click(
fn=analyze_weather_data,
inputs=[site_id, hours],
outputs=[stats_output, weather_plots, wind_rose]
)
if __name__ == "__main__":
demo.launch()