Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,92 +12,9 @@ from matplotlib.gridspec import GridSpec
|
|
| 12 |
from windrose import WindroseAxes
|
| 13 |
from datetime import datetime
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
def install_playwright_browsers():
|
| 17 |
-
try:
|
| 18 |
-
if not os.path.exists('/home/user/.cache/ms-playwright'):
|
| 19 |
-
print("Installing Playwright browsers...")
|
| 20 |
-
subprocess.run(
|
| 21 |
-
[sys.executable, "-m", "playwright", "install", "chromium"],
|
| 22 |
-
check=True,
|
| 23 |
-
capture_output=True,
|
| 24 |
-
text=True
|
| 25 |
-
)
|
| 26 |
-
print("Playwright browsers installed successfully")
|
| 27 |
-
except Exception as e:
|
| 28 |
-
print(f"Error installing browsers: {e}")
|
| 29 |
-
|
| 30 |
-
# Install browsers when the module loads
|
| 31 |
install_playwright_browsers()
|
| 32 |
|
| 33 |
-
def scrape_weather_data(site_id, hours=720):
|
| 34 |
-
"""Scrape weather data from weather.gov timeseries"""
|
| 35 |
-
url = f"https://www.weather.gov/wrh/timeseries?site={site_id}&hours={hours}&units=english&chart=on&headers=on&obs=tabular&hourly=false&pview=full&font=12&plot="
|
| 36 |
-
|
| 37 |
-
try:
|
| 38 |
-
with sync_playwright() as p:
|
| 39 |
-
# Launch browser with minimal settings
|
| 40 |
-
browser = p.chromium.launch(
|
| 41 |
-
headless=True,
|
| 42 |
-
args=['--no-sandbox', '--disable-dev-shm-usage']
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
# Create context with desktop user agent
|
| 46 |
-
context = browser.new_context(
|
| 47 |
-
user_agent='Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
# Create new page and navigate
|
| 51 |
-
page = context.new_page()
|
| 52 |
-
response = page.goto(url)
|
| 53 |
-
print(f"Response status: {response.status}")
|
| 54 |
-
|
| 55 |
-
# Wait for content to load
|
| 56 |
-
page.wait_for_selector('table', timeout=30000)
|
| 57 |
-
time.sleep(5)
|
| 58 |
-
|
| 59 |
-
# Get all text content
|
| 60 |
-
print("Extracting data...")
|
| 61 |
-
content = page.evaluate('''() => {
|
| 62 |
-
const getTextContent = () => {
|
| 63 |
-
const rows = [];
|
| 64 |
-
const tables = document.getElementsByTagName('table');
|
| 65 |
-
for (const table of tables) {
|
| 66 |
-
if (table.textContent.includes('Date/Time')) {
|
| 67 |
-
const headerRow = Array.from(table.querySelectorAll('th'))
|
| 68 |
-
.map(th => th.textContent.trim());
|
| 69 |
-
|
| 70 |
-
const dataRows = Array.from(table.querySelectorAll('tbody tr'))
|
| 71 |
-
.map(row => Array.from(row.querySelectorAll('td'))
|
| 72 |
-
.map(td => td.textContent.trim()));
|
| 73 |
-
|
| 74 |
-
return {headers: headerRow, rows: dataRows};
|
| 75 |
-
}
|
| 76 |
-
}
|
| 77 |
-
return null;
|
| 78 |
-
};
|
| 79 |
-
|
| 80 |
-
return getTextContent();
|
| 81 |
-
}''')
|
| 82 |
-
|
| 83 |
-
print(f"Found {len(content['rows'] if content else [])} rows of data")
|
| 84 |
-
browser.close()
|
| 85 |
-
return content
|
| 86 |
-
|
| 87 |
-
except Exception as e:
|
| 88 |
-
print(f"Error scraping data: {str(e)}")
|
| 89 |
-
raise e
|
| 90 |
-
|
| 91 |
-
def parse_date(date_str):
|
| 92 |
-
"""Parse date string to datetime"""
|
| 93 |
-
try:
|
| 94 |
-
# Handle format like "Feb 10, 10:00 am"
|
| 95 |
-
# Add current year to the date string
|
| 96 |
-
current_year = datetime.now().year
|
| 97 |
-
return pd.to_datetime(f"{date_str}, {current_year}", format="%b %d, %I:%M %p, %Y")
|
| 98 |
-
except:
|
| 99 |
-
return pd.NaT
|
| 100 |
-
|
| 101 |
def parse_weather_data(data):
|
| 102 |
"""Parse the weather data into a pandas DataFrame"""
|
| 103 |
if not data or 'rows' not in data:
|
|
@@ -105,21 +22,21 @@ def parse_weather_data(data):
|
|
| 105 |
|
| 106 |
df = pd.DataFrame(data['rows'])
|
| 107 |
|
| 108 |
-
#
|
| 109 |
columns = ['datetime', 'temp', 'dew_point', 'humidity', 'wind_chill',
|
| 110 |
'wind_dir', 'wind_speed', 'snow_depth', 'snowfall_3hr',
|
| 111 |
-
'snowfall_6hr', 'snowfall_24hr']
|
| 112 |
|
| 113 |
-
df = df.iloc[:, :
|
| 114 |
df.columns = columns
|
| 115 |
|
| 116 |
-
# Convert numeric columns
|
| 117 |
numeric_cols = ['temp', 'dew_point', 'humidity', 'wind_chill', 'snow_depth',
|
| 118 |
-
'snowfall_3hr', 'snowfall_6hr', 'snowfall_24hr']
|
| 119 |
for col in numeric_cols:
|
| 120 |
df[col] = pd.to_numeric(df[col], errors='coerce')
|
| 121 |
|
| 122 |
-
#
|
| 123 |
def parse_wind(x):
|
| 124 |
if pd.isna(x): return np.nan, np.nan
|
| 125 |
match = re.search(r'(\d+)G(\d+)', str(x))
|
|
@@ -131,7 +48,7 @@ def parse_weather_data(data):
|
|
| 131 |
df['wind_speed'] = wind_data.apply(lambda x: x[0])
|
| 132 |
df['wind_gust'] = wind_data.apply(lambda x: x[1])
|
| 133 |
|
| 134 |
-
#
|
| 135 |
def parse_direction(direction):
|
| 136 |
direction_map = {
|
| 137 |
'N': 0, 'NNE': 22.5, 'NE': 45, 'ENE': 67.5,
|
|
@@ -149,20 +66,11 @@ def parse_weather_data(data):
|
|
| 149 |
|
| 150 |
return df
|
| 151 |
|
| 152 |
-
def create_wind_rose(df, ax):
|
| 153 |
-
"""Create a wind rose plot"""
|
| 154 |
-
if not isinstance(ax, WindroseAxes):
|
| 155 |
-
ax = WindroseAxes.from_ax(ax=ax)
|
| 156 |
-
ax.bar(df['wind_dir_deg'].dropna(), df['wind_speed'].dropna(),
|
| 157 |
-
bins=np.arange(0, 40, 5), normed=True, opening=0.8, edgecolor='white')
|
| 158 |
-
ax.set_legend(title='Wind Speed (mph)')
|
| 159 |
-
ax.set_title('Wind Rose')
|
| 160 |
-
|
| 161 |
def create_plots(df):
|
| 162 |
-
"""Create all weather plots"""
|
| 163 |
-
# Create figure with subplots
|
| 164 |
-
fig = plt.figure(figsize=(20,
|
| 165 |
-
gs = GridSpec(
|
| 166 |
|
| 167 |
# Temperature plot
|
| 168 |
ax1 = fig.add_subplot(gs[0, :])
|
|
@@ -186,24 +94,40 @@ def create_plots(df):
|
|
| 186 |
ax2.grid(True)
|
| 187 |
plt.setp(ax2.xaxis.get_majorticklabels(), rotation=45)
|
| 188 |
|
| 189 |
-
# Snow depth plot
|
| 190 |
-
ax3 = fig.add_subplot(gs[2,
|
| 191 |
ax3.plot(df['datetime'], df['snow_depth'], color='blue', label='Snow Depth')
|
| 192 |
-
ax3.
|
|
|
|
|
|
|
| 193 |
ax3.set_xlabel('Date')
|
| 194 |
-
ax3.set_ylabel('Snow Depth (inches)')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
ax3.grid(True)
|
| 196 |
plt.setp(ax3.xaxis.get_majorticklabels(), rotation=45)
|
| 197 |
|
| 198 |
-
#
|
| 199 |
-
ax4 = fig.add_subplot(gs[
|
| 200 |
-
|
| 201 |
-
ax4.
|
| 202 |
-
ax4.set_title('
|
| 203 |
ax4.set_xlabel('Date')
|
| 204 |
-
ax4.set_ylabel('
|
|
|
|
| 205 |
plt.setp(ax4.xaxis.get_majorticklabels(), rotation=45)
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
plt.tight_layout()
|
| 208 |
|
| 209 |
# Create separate wind rose figure
|
|
@@ -226,7 +150,7 @@ def analyze_weather_data(site_id, hours):
|
|
| 226 |
print("Parsing data...")
|
| 227 |
df = parse_weather_data(raw_data)
|
| 228 |
|
| 229 |
-
# Calculate statistics
|
| 230 |
print("Calculating statistics...")
|
| 231 |
stats = {
|
| 232 |
'Temperature Range': f"{df['temp'].min():.1f}°F to {df['temp'].max():.1f}°F",
|
|
@@ -235,6 +159,8 @@ def analyze_weather_data(site_id, hours):
|
|
| 235 |
'Max Wind Gust': f"{df['wind_gust'].max():.1f} mph",
|
| 236 |
'Average Humidity': f"{df['humidity'].mean():.1f}%",
|
| 237 |
'Current Snow Depth': f"{df['snow_depth'].iloc[0]:.1f} inches",
|
|
|
|
|
|
|
| 238 |
'Total New Snow (24hr)': f"{df['snowfall_24hr'].sum():.1f} inches"
|
| 239 |
}
|
| 240 |
|
|
@@ -256,7 +182,7 @@ def analyze_weather_data(site_id, hours):
|
|
| 256 |
print(f"Error in analysis: {str(e)}")
|
| 257 |
return f"Error analyzing data: {str(e)}", None, None
|
| 258 |
|
| 259 |
-
#
|
| 260 |
with gr.Blocks(title="Weather Station Data Analyzer") as demo:
|
| 261 |
gr.Markdown("# Weather Station Data Analyzer")
|
| 262 |
gr.Markdown("""
|
|
|
|
| 12 |
from windrose import WindroseAxes
|
| 13 |
from datetime import datetime
|
| 14 |
|
| 15 |
+
# Previous installation and scraping functions remain the same
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
install_playwright_browsers()
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def parse_weather_data(data):
|
| 19 |
"""Parse the weather data into a pandas DataFrame"""
|
| 20 |
if not data or 'rows' not in data:
|
|
|
|
| 22 |
|
| 23 |
df = pd.DataFrame(data['rows'])
|
| 24 |
|
| 25 |
+
# Updated columns list to include SWE
|
| 26 |
columns = ['datetime', 'temp', 'dew_point', 'humidity', 'wind_chill',
|
| 27 |
'wind_dir', 'wind_speed', 'snow_depth', 'snowfall_3hr',
|
| 28 |
+
'snowfall_6hr', 'snowfall_24hr', 'swe']
|
| 29 |
|
| 30 |
+
df = df.iloc[:, :12] # Take first 12 columns including SWE
|
| 31 |
df.columns = columns
|
| 32 |
|
| 33 |
+
# Convert numeric columns including SWE
|
| 34 |
numeric_cols = ['temp', 'dew_point', 'humidity', 'wind_chill', 'snow_depth',
|
| 35 |
+
'snowfall_3hr', 'snowfall_6hr', 'snowfall_24hr', 'swe']
|
| 36 |
for col in numeric_cols:
|
| 37 |
df[col] = pd.to_numeric(df[col], errors='coerce')
|
| 38 |
|
| 39 |
+
# Previous wind data parsing remains the same
|
| 40 |
def parse_wind(x):
|
| 41 |
if pd.isna(x): return np.nan, np.nan
|
| 42 |
match = re.search(r'(\d+)G(\d+)', str(x))
|
|
|
|
| 48 |
df['wind_speed'] = wind_data.apply(lambda x: x[0])
|
| 49 |
df['wind_gust'] = wind_data.apply(lambda x: x[1])
|
| 50 |
|
| 51 |
+
# Previous wind direction parsing remains the same
|
| 52 |
def parse_direction(direction):
|
| 53 |
direction_map = {
|
| 54 |
'N': 0, 'NNE': 22.5, 'NE': 45, 'ENE': 67.5,
|
|
|
|
| 66 |
|
| 67 |
return df
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
def create_plots(df):
|
| 70 |
+
"""Create all weather plots including SWE"""
|
| 71 |
+
# Create figure with subplots - updated layout to include SWE
|
| 72 |
+
fig = plt.figure(figsize=(20, 20)) # Increased height for additional plot
|
| 73 |
+
gs = GridSpec(4, 2, figure=fig) # Added one more row for SWE
|
| 74 |
|
| 75 |
# Temperature plot
|
| 76 |
ax1 = fig.add_subplot(gs[0, :])
|
|
|
|
| 94 |
ax2.grid(True)
|
| 95 |
plt.setp(ax2.xaxis.get_majorticklabels(), rotation=45)
|
| 96 |
|
| 97 |
+
# Snow depth and SWE comparison plot
|
| 98 |
+
ax3 = fig.add_subplot(gs[2, :])
|
| 99 |
ax3.plot(df['datetime'], df['snow_depth'], color='blue', label='Snow Depth')
|
| 100 |
+
ax3_twin = ax3.twinx()
|
| 101 |
+
ax3_twin.plot(df['datetime'], df['swe'], color='red', label='SWE')
|
| 102 |
+
ax3.set_title('Snow Depth and Snow Water Equivalent Over Time')
|
| 103 |
ax3.set_xlabel('Date')
|
| 104 |
+
ax3.set_ylabel('Snow Depth (inches)', color='blue')
|
| 105 |
+
ax3_twin.set_ylabel('Snow Water Equivalent (inches)', color='red')
|
| 106 |
+
lines1, labels1 = ax3.get_legend_handles_labels()
|
| 107 |
+
lines2, labels2 = ax3_twin.get_legend_handles_labels()
|
| 108 |
+
ax3.legend(lines1 + lines2, labels1 + labels2, loc='upper right')
|
| 109 |
ax3.grid(True)
|
| 110 |
plt.setp(ax3.xaxis.get_majorticklabels(), rotation=45)
|
| 111 |
|
| 112 |
+
# Snow density plot (SWE/Snow Depth ratio)
|
| 113 |
+
ax4 = fig.add_subplot(gs[3, 0])
|
| 114 |
+
snow_density = (df['swe'] / df['snow_depth']) * 100 # Convert to percentage
|
| 115 |
+
ax4.plot(df['datetime'], snow_density, color='purple')
|
| 116 |
+
ax4.set_title('Snow Density (SWE/Snow Depth Ratio)')
|
| 117 |
ax4.set_xlabel('Date')
|
| 118 |
+
ax4.set_ylabel('Snow Density (%)')
|
| 119 |
+
ax4.grid(True)
|
| 120 |
plt.setp(ax4.xaxis.get_majorticklabels(), rotation=45)
|
| 121 |
|
| 122 |
+
# Daily new snow bar plot
|
| 123 |
+
ax5 = fig.add_subplot(gs[3, 1])
|
| 124 |
+
daily_snow = df.groupby('date')['snowfall_24hr'].max()
|
| 125 |
+
ax5.bar(daily_snow.index, daily_snow.values, color='blue')
|
| 126 |
+
ax5.set_title('Daily New Snow')
|
| 127 |
+
ax5.set_xlabel('Date')
|
| 128 |
+
ax5.set_ylabel('New Snow (inches)')
|
| 129 |
+
plt.setp(ax5.xaxis.get_majorticklabels(), rotation=45)
|
| 130 |
+
|
| 131 |
plt.tight_layout()
|
| 132 |
|
| 133 |
# Create separate wind rose figure
|
|
|
|
| 150 |
print("Parsing data...")
|
| 151 |
df = parse_weather_data(raw_data)
|
| 152 |
|
| 153 |
+
# Calculate statistics - updated to include SWE
|
| 154 |
print("Calculating statistics...")
|
| 155 |
stats = {
|
| 156 |
'Temperature Range': f"{df['temp'].min():.1f}°F to {df['temp'].max():.1f}°F",
|
|
|
|
| 159 |
'Max Wind Gust': f"{df['wind_gust'].max():.1f} mph",
|
| 160 |
'Average Humidity': f"{df['humidity'].mean():.1f}%",
|
| 161 |
'Current Snow Depth': f"{df['snow_depth'].iloc[0]:.1f} inches",
|
| 162 |
+
'Current SWE': f"{df['swe'].iloc[0]:.2f} inches",
|
| 163 |
+
'Snow Density': f"{(df['swe'].iloc[0] / df['snow_depth'].iloc[0] * 100):.1f}%",
|
| 164 |
'Total New Snow (24hr)': f"{df['snowfall_24hr'].sum():.1f} inches"
|
| 165 |
}
|
| 166 |
|
|
|
|
| 182 |
print(f"Error in analysis: {str(e)}")
|
| 183 |
return f"Error analyzing data: {str(e)}", None, None
|
| 184 |
|
| 185 |
+
# Gradio interface remains the same
|
| 186 |
with gr.Blocks(title="Weather Station Data Analyzer") as demo:
|
| 187 |
gr.Markdown("# Weather Station Data Analyzer")
|
| 188 |
gr.Markdown("""
|