Spaces:
Running
Running
Add GRU model (fingers crossed it works)
Browse files
app.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import (
|
| 3 |
DistilBertTokenizerFast,
|
|
@@ -9,8 +12,11 @@ from huggingface_hub import hf_hub_download
|
|
| 9 |
import torch
|
| 10 |
import pickle
|
| 11 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
# Load models and tokenizers
|
| 14 |
models = {
|
| 15 |
"DistilBERT": {
|
| 16 |
"tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
|
|
@@ -50,7 +56,30 @@ for model_data in models.values():
|
|
| 50 |
if "model" in model_data:
|
| 51 |
model_data["model"].to(device)
|
| 52 |
|
| 53 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def predict_with_distilbert(text):
|
| 55 |
tokenizer = models["DistilBERT"]["tokenizer"]
|
| 56 |
model = models["DistilBERT"]["model"]
|
|
@@ -99,6 +128,7 @@ def predict_with_roberta_ordek899(text):
|
|
| 99 |
# Unified function for sentiment analysis and statistics
|
| 100 |
def analyze_sentiment_and_statistics(text):
|
| 101 |
results = {
|
|
|
|
| 102 |
"DistilBERT": predict_with_distilbert(text),
|
| 103 |
"Logistic Regression": predict_with_logistic_regression(text),
|
| 104 |
"BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
|
|
@@ -169,6 +199,7 @@ with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding:
|
|
| 169 |
|
| 170 |
with gr.Row():
|
| 171 |
with gr.Column():
|
|
|
|
| 172 |
distilbert_output = gr.Textbox(label="Predicted Sentiment (DistilBERT)", interactive=False)
|
| 173 |
log_reg_output = gr.Textbox(label="Predicted Sentiment (Logistic Regression)", interactive=False)
|
| 174 |
bert_output = gr.Textbox(label="Predicted Sentiment (BERT Multilingual)", interactive=False)
|
|
@@ -183,6 +214,7 @@ with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding:
|
|
| 183 |
results, statistics = analyze_sentiment_and_statistics(text_input)
|
| 184 |
if "Message" in statistics:
|
| 185 |
return (
|
|
|
|
| 186 |
f"{results['DistilBERT']}",
|
| 187 |
f"{results['Logistic Regression']}",
|
| 188 |
f"{results['BERT Multilingual (NLP Town)']}",
|
|
@@ -192,6 +224,7 @@ with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding:
|
|
| 192 |
)
|
| 193 |
else:
|
| 194 |
return (
|
|
|
|
| 195 |
f"{results['DistilBERT']}",
|
| 196 |
f"{results['Logistic Regression']}",
|
| 197 |
f"{results['BERT Multilingual (NLP Town)']}",
|
|
@@ -204,6 +237,7 @@ with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding:
|
|
| 204 |
process_input_and_analyze,
|
| 205 |
inputs=[text_input],
|
| 206 |
outputs=[
|
|
|
|
| 207 |
distilbert_output,
|
| 208 |
log_reg_output,
|
| 209 |
bert_output,
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU and enforce CPU execution
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
from transformers import (
|
| 6 |
DistilBertTokenizerFast,
|
|
|
|
| 12 |
import torch
|
| 13 |
import pickle
|
| 14 |
import numpy as np
|
| 15 |
+
from tensorflow.keras.models import load_model
|
| 16 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 17 |
+
import re
|
| 18 |
|
| 19 |
+
# Load pre-trained models and tokenizers
|
| 20 |
models = {
|
| 21 |
"DistilBERT": {
|
| 22 |
"tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
|
|
|
|
| 56 |
if "model" in model_data:
|
| 57 |
model_data["model"].to(device)
|
| 58 |
|
| 59 |
+
# Load GRU model and tokenizer
|
| 60 |
+
gru_repo_id = "arjahojnik/GRU-sentiment-model"
|
| 61 |
+
gru_model_path = hf_hub_download(repo_id=gru_repo_id, filename="best_GRU_tuning_model.h5")
|
| 62 |
+
gru_model = load_model(gru_model_path)
|
| 63 |
+
gru_tokenizer_path = hf_hub_download(repo_id=gru_repo_id, filename="my_tokenizer.pkl")
|
| 64 |
+
with open(gru_tokenizer_path, "rb") as f:
|
| 65 |
+
gru_tokenizer = pickle.load(f)
|
| 66 |
+
|
| 67 |
+
# Preprocessing function for GRU
|
| 68 |
+
def preprocess_text(text):
|
| 69 |
+
text = text.lower()
|
| 70 |
+
text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
|
| 71 |
+
return text
|
| 72 |
+
|
| 73 |
+
# GRU prediction function
|
| 74 |
+
def predict_with_gru(text):
|
| 75 |
+
cleaned = preprocess_text(text)
|
| 76 |
+
seq = gru_tokenizer.texts_to_sequences([cleaned])
|
| 77 |
+
padded_seq = pad_sequences(seq, maxlen=200) # Ensure maxlen matches the GRU training
|
| 78 |
+
probs = gru_model.predict(padded_seq)
|
| 79 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
| 80 |
+
return int(predicted_class + 1)
|
| 81 |
+
|
| 82 |
+
# Functions for other model predictions
|
| 83 |
def predict_with_distilbert(text):
|
| 84 |
tokenizer = models["DistilBERT"]["tokenizer"]
|
| 85 |
model = models["DistilBERT"]["model"]
|
|
|
|
| 128 |
# Unified function for sentiment analysis and statistics
|
| 129 |
def analyze_sentiment_and_statistics(text):
|
| 130 |
results = {
|
| 131 |
+
"GRU Model": predict_with_gru(text),
|
| 132 |
"DistilBERT": predict_with_distilbert(text),
|
| 133 |
"Logistic Regression": predict_with_logistic_regression(text),
|
| 134 |
"BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
|
|
|
|
| 199 |
|
| 200 |
with gr.Row():
|
| 201 |
with gr.Column():
|
| 202 |
+
gru_output = gr.Textbox(label="Predicted Sentiment (GRU Model)", interactive=False)
|
| 203 |
distilbert_output = gr.Textbox(label="Predicted Sentiment (DistilBERT)", interactive=False)
|
| 204 |
log_reg_output = gr.Textbox(label="Predicted Sentiment (Logistic Regression)", interactive=False)
|
| 205 |
bert_output = gr.Textbox(label="Predicted Sentiment (BERT Multilingual)", interactive=False)
|
|
|
|
| 214 |
results, statistics = analyze_sentiment_and_statistics(text_input)
|
| 215 |
if "Message" in statistics:
|
| 216 |
return (
|
| 217 |
+
f"{results['GRU Model']}",
|
| 218 |
f"{results['DistilBERT']}",
|
| 219 |
f"{results['Logistic Regression']}",
|
| 220 |
f"{results['BERT Multilingual (NLP Town)']}",
|
|
|
|
| 224 |
)
|
| 225 |
else:
|
| 226 |
return (
|
| 227 |
+
f"{results['GRU Model']}",
|
| 228 |
f"{results['DistilBERT']}",
|
| 229 |
f"{results['Logistic Regression']}",
|
| 230 |
f"{results['BERT Multilingual (NLP Town)']}",
|
|
|
|
| 237 |
process_input_and_analyze,
|
| 238 |
inputs=[text_input],
|
| 239 |
outputs=[
|
| 240 |
+
gru_output,
|
| 241 |
distilbert_output,
|
| 242 |
log_reg_output,
|
| 243 |
bert_output,
|