Spaces:
Running
Running
Experimenting with unicorns
Browse files
app.py
CHANGED
|
@@ -1,6 +1,12 @@
|
|
| 1 |
import os
|
| 2 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU and enforce CPU execution
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
from transformers import (
|
| 6 |
DistilBertTokenizerFast,
|
|
@@ -196,33 +202,74 @@ with gr.Blocks(
|
|
| 196 |
text-align: center;
|
| 197 |
font-size: 2.5rem;
|
| 198 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
footer {
|
| 200 |
text-align: center;
|
| 201 |
margin-top: 20px;
|
| 202 |
font-size: 14px;
|
| 203 |
color: gray;
|
| 204 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
"""
|
| 206 |
) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
gr.Markdown("# Sentiment Analysis Demo")
|
| 208 |
gr.Markdown(
|
| 209 |
"""
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
- **Deep Learning**: GRU, LSTM, and BiLSTM models.
|
| 214 |
-
- **Transformers**: DistilBERT, TinyBERT, BERT Multilingual, and RoBERTa.
|
| 215 |
-
|
| 216 |
-
### Features:
|
| 217 |
-
- Compare predictions across different models.
|
| 218 |
-
- See which model predicts the highest and lowest scores.
|
| 219 |
-
- Get the average sentiment score across all models.
|
| 220 |
-
- Easily test with your own input or select from suggested reviews.
|
| 221 |
-
|
| 222 |
-
Use this app to explore how different models interpret sentiment and compare their outputs!
|
| 223 |
"""
|
| 224 |
)
|
| 225 |
|
|
|
|
| 226 |
with gr.Row():
|
| 227 |
with gr.Column():
|
| 228 |
text_input = gr.Textbox(
|
|
@@ -251,7 +298,7 @@ with gr.Blocks(
|
|
| 251 |
inputs=[sample_dropdown],
|
| 252 |
outputs=[text_input]
|
| 253 |
)
|
| 254 |
-
analyze_button = gr.Button("Analyze Sentiment")
|
| 255 |
|
| 256 |
with gr.Row():
|
| 257 |
with gr.Column():
|
|
@@ -283,13 +330,59 @@ with gr.Blocks(
|
|
| 283 |
This demo was built as a part of the NLP course at the University of Zagreb.
|
| 284 |
Check out our GitHub repository:
|
| 285 |
<a href="https://github.com/FFZG-NLP-2024/TripAdvisor-Sentiment/" target="_blank">TripAdvisor Sentiment Analysis</a>
|
| 286 |
-
|
| 287 |
-
<a href="https://huggingface.co/collections/nhull/nlp-zg-6794604b85fd4216e6470d38" target="_blank">NLP Zagreb HuggingFace Collection</a
|
| 288 |
</footer>
|
| 289 |
"""
|
| 290 |
)
|
| 291 |
-
|
| 292 |
def process_input_and_analyze(text_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
results, statistics = analyze_sentiment_and_statistics(text_input)
|
| 294 |
if "Message" in statistics:
|
| 295 |
return (
|
|
|
|
| 1 |
import os
|
| 2 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU and enforce CPU execution
|
| 3 |
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
|
| 7 |
+
# Load a fun unicorn image
|
| 8 |
+
unicorn_image_path = "unicorn.png"
|
| 9 |
+
|
| 10 |
import gradio as gr
|
| 11 |
from transformers import (
|
| 12 |
DistilBertTokenizerFast,
|
|
|
|
| 202 |
text-align: center;
|
| 203 |
font-size: 2.5rem;
|
| 204 |
}
|
| 205 |
+
.unicorn-image {
|
| 206 |
+
display: block;
|
| 207 |
+
margin: auto;
|
| 208 |
+
width: 300px; /* Larger size */
|
| 209 |
+
height: auto;
|
| 210 |
+
border-radius: 20px;
|
| 211 |
+
margin-bottom: 20px;
|
| 212 |
+
animation: magical-float 5s ease-in-out infinite; /* Gentle floating animation */
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
@keyframes magical-float {
|
| 216 |
+
0% {
|
| 217 |
+
transform: translate(0, 0) rotate(0deg); /* Start position */
|
| 218 |
+
}
|
| 219 |
+
25% {
|
| 220 |
+
transform: translate(10px, -10px) rotate(3deg); /* Slightly up and right, tilted */
|
| 221 |
+
}
|
| 222 |
+
50% {
|
| 223 |
+
transform: translate(0, -20px) rotate(0deg); /* Higher point, back to straight */
|
| 224 |
+
}
|
| 225 |
+
75% {
|
| 226 |
+
transform: translate(-10px, -10px) rotate(-3deg); /* Slightly up and left, tilted */
|
| 227 |
+
}
|
| 228 |
+
100% {
|
| 229 |
+
transform: translate(0, 0) rotate(0deg); /* Return to start position */
|
| 230 |
+
}
|
| 231 |
+
}
|
| 232 |
+
|
| 233 |
footer {
|
| 234 |
text-align: center;
|
| 235 |
margin-top: 20px;
|
| 236 |
font-size: 14px;
|
| 237 |
color: gray;
|
| 238 |
}
|
| 239 |
+
.custom-analyze-button {
|
| 240 |
+
background-color: #e8a4c9;
|
| 241 |
+
color: white;
|
| 242 |
+
font-size: 1rem;
|
| 243 |
+
padding: 10px 20px;
|
| 244 |
+
border-radius: 10px;
|
| 245 |
+
border: none;
|
| 246 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 247 |
+
transition: transform 0.2s, background-color 0.2s;
|
| 248 |
+
}
|
| 249 |
+
.custom-analyze-button:hover {
|
| 250 |
+
background-color: #d693b8;
|
| 251 |
+
transform: scale(1.05);
|
| 252 |
+
}
|
| 253 |
"""
|
| 254 |
) as demo:
|
| 255 |
+
# Add the unicorn image at the start
|
| 256 |
+
gr.Image(
|
| 257 |
+
value=unicorn_image_path, # File path or URL
|
| 258 |
+
type="filepath", # Correct type for file paths
|
| 259 |
+
elem_classes=["unicorn-image"]
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
|
| 263 |
gr.Markdown("# Sentiment Analysis Demo")
|
| 264 |
gr.Markdown(
|
| 265 |
"""
|
| 266 |
+
Welcome! A magical unicorn 🦄 will guide you through this sentiment analysis journey! 🎉
|
| 267 |
+
This app lets you explore how different models interpret sentiment and compare their predictions.
|
| 268 |
+
**Enjoy the magic!**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
"""
|
| 270 |
)
|
| 271 |
|
| 272 |
+
|
| 273 |
with gr.Row():
|
| 274 |
with gr.Column():
|
| 275 |
text_input = gr.Textbox(
|
|
|
|
| 298 |
inputs=[sample_dropdown],
|
| 299 |
outputs=[text_input]
|
| 300 |
)
|
| 301 |
+
analyze_button = gr.Button("Analyze Sentiment", elem_classes=["custom-analyze-button"])
|
| 302 |
|
| 303 |
with gr.Row():
|
| 304 |
with gr.Column():
|
|
|
|
| 330 |
This demo was built as a part of the NLP course at the University of Zagreb.
|
| 331 |
Check out our GitHub repository:
|
| 332 |
<a href="https://github.com/FFZG-NLP-2024/TripAdvisor-Sentiment/" target="_blank">TripAdvisor Sentiment Analysis</a>
|
| 333 |
+
or explore our HuggingFace collection:
|
| 334 |
+
<a href="https://huggingface.co/collections/nhull/nlp-zg-6794604b85fd4216e6470d38" target="_blank">NLP Zagreb HuggingFace Collection</a>.
|
| 335 |
</footer>
|
| 336 |
"""
|
| 337 |
)
|
|
|
|
| 338 |
def process_input_and_analyze(text_input):
|
| 339 |
+
# Check for empty input
|
| 340 |
+
if not text_input.strip():
|
| 341 |
+
funny_message = "Are you sure you wrote something? Try again! 🧐"
|
| 342 |
+
return (
|
| 343 |
+
funny_message, # Logistic Regression
|
| 344 |
+
funny_message, # GRU
|
| 345 |
+
funny_message, # LSTM
|
| 346 |
+
funny_message, # BiLSTM
|
| 347 |
+
funny_message, # DistilBERT
|
| 348 |
+
funny_message, # BERT Multilingual
|
| 349 |
+
funny_message, # TinyBERT
|
| 350 |
+
funny_message, # RoBERTa
|
| 351 |
+
"No statistics to display, as nothing was input. 🤷♀️"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Check for one letter/number input
|
| 355 |
+
if len(text_input.strip()) == 1 or text_input.strip().isdigit():
|
| 356 |
+
funny_message = "Why not write something that makes sense? 🤔"
|
| 357 |
+
return (
|
| 358 |
+
funny_message, # Logistic Regression
|
| 359 |
+
funny_message, # GRU
|
| 360 |
+
funny_message, # LSTM
|
| 361 |
+
funny_message, # BiLSTM
|
| 362 |
+
funny_message, # DistilBERT
|
| 363 |
+
funny_message, # BERT Multilingual
|
| 364 |
+
funny_message, # TinyBERT
|
| 365 |
+
funny_message, # RoBERTa
|
| 366 |
+
"No statistics to display for one letter or number. 😅"
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# Check if the review is shorter than 5 words
|
| 370 |
+
if len(text_input.split()) < 5:
|
| 371 |
+
results, statistics = analyze_sentiment_and_statistics(text_input)
|
| 372 |
+
short_message = "Maybe try with some longer text next time. 😉"
|
| 373 |
+
return (
|
| 374 |
+
f"{results['Logistic Regression']} - {short_message}",
|
| 375 |
+
f"{results['GRU Model']} - {short_message}",
|
| 376 |
+
f"{results['LSTM Model']} - {short_message}",
|
| 377 |
+
f"{results['BiLSTM Model']} - {short_message}",
|
| 378 |
+
f"{results['DistilBERT']} - {short_message}",
|
| 379 |
+
f"{results['BERT Multilingual (NLP Town)']} - {short_message}",
|
| 380 |
+
f"{results['TinyBERT']} - {short_message}",
|
| 381 |
+
f"{results['RoBERTa']} - {short_message}",
|
| 382 |
+
f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}\n{short_message}"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
# Proceed with normal sentiment analysis if none of the above conditions apply
|
| 386 |
results, statistics = analyze_sentiment_and_statistics(text_input)
|
| 387 |
if "Message" in statistics:
|
| 388 |
return (
|