File size: 24,612 Bytes
1eba40c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
#This file has been developed by the SINAI research group for its usage in the MentalRiskES evaluation campaign at IberLEF 2023.

# Required libraries
import pandas as pd
import numpy as np
import sklearn.metrics as metrics
from scipy.stats import pearsonr

# Read Gold labels for BinaryClassification
def read_qrels(qrels_file):
    qrels={}
    df_golden_truth = pd.read_csv(qrels_file)
    for index, r in df_golden_truth.iterrows():
        qrels[ r['Subject'] ] = int(r['label'])
    print("\n"+str(len(qrels))+ " lines read in qrels file!\n\n")
    return(qrels)

# Read Gold labels for Simple Regression
def read_qrels_regression(qrels_file):
    qrels={}
    df_golden_truth = pd.read_csv(qrels_file)
    for index, r in df_golden_truth.iterrows():
        qrels[ r['Subject'] ] = float(r['label'])
    print("\n"+str(len(qrels))+ " lines read in qrels file!\n\n")
    return(qrels)

# Read Gold labels for Multiclass classification
def read_qrels_multiclass(qrels_file):
    qrels={}
    qrels1 = {}
    df_golden_truth = pd.read_csv(qrels_file)
    for index, r in df_golden_truth.iterrows():
        qrels1[ r['Subject'] ] = r['label']
        if "suffer" in r['label']:
            qrels[ r['Subject'] ] = 1
        else:
            qrels[ r['Subject'] ] = 0
    print("\n"+str(len(qrels))+ " lines read in qrels file!\n\n")
    return qrels, qrels1

# Read Gold labels for Multi-output regression
def read_qrels_multioutput(qrels_file):
    qrels={}
    df_golden_truth = pd.read_csv(qrels_file)
    for index, r in df_golden_truth.iterrows():
        qrels[ r['Subject'] ] = [r['suffer_in_favour'],r['suffer_against'],r['suffer_other'],r['control']]
    print("\n"+str(len(qrels))+ " lines read in qrels file!\n\n")
    return qrels

###########################################################################
# Calculation of Binary classification metrics for Binary classification tasks
class BinaryClassification():
    def __init__(self, task, data, qrels):
        self.run_results = data 
        self.qrels_b = read_qrels(qrels)
        self.task = task
    pass

    def penalty(self,delay):
        if self.task == "1": # TCA
            p = 0.0292 # trial
        elif self.task == "2": # Depression
            p = 0.0179 # trial
        pen = -1.0 + 2.0/(1+np.exp(-p*(delay-1)))
        return(pen)

    def n_pos(self):
        total_pos = 0
        for key in self.qrels_b:
            total_pos += self.qrels_b[key]
        return(total_pos)

    def eval_performance(self):
        print("===================================================")
        print("DECISION-BASED EVALUATION:") 
        self.run_results = self.run_results.sort_values(by=['nick'])
        total_pos=self.n_pos()
        erdes5 = np.zeros(len(self.run_results))
        erdes30 = np.zeros(len(self.run_results))
        erdes50 = np.zeros(len(self.run_results))
        ierdes = 0
        true_pos = 0
        false_pos = 0
        latency_tps = list()
        penalty_tps = list()

        # Latency-based metrics
        for index, r in self.run_results.iterrows():
            try:
                
                if ( self.qrels_b[ r['nick'] ] ==  r['pred'] ):
                    if ( r['pred'] == 1 ):
                        true_pos+=1
                        erdes5[ierdes]=1.0 - (1.0/(1.0+np.exp( (r["round"]+1) - 5.0)))
                        erdes30[ierdes]=1.0 - (1.0/(1.0+np.exp( (r["round"]+1) - 30.0)))
                        erdes50[ierdes]=1.0 - (1.0/(1.0+np.exp( (r["round"]+1) - 50.0)))
                        latency_tps.append(r["round"]+1)
                        penalty_tps.append(self.penalty(r["round"]+1))
                    else:
                        erdes5[ierdes]=0
                        erdes30[ierdes]=0
                        erdes50[ierdes]=0
                else:
                    if ( r['pred'] == 1 ):
                        false_pos+=1
                        erdes5[ierdes]=float(total_pos)/float(len(self.qrels_b))
                        erdes50[ierdes]=float(total_pos)/float(len(self.qrels_b))
                    else:
                        erdes5[ierdes]=1
                        erdes30[ierdes]=1
                        erdes50[ierdes]=1
            except KeyError:
                print("User does not appear in the qrels:"+r['nick'])
            ierdes+=1

        _speed = 1-np.median(np.array(penalty_tps))
        if true_pos != 0 :
            precision = float(true_pos) / float(true_pos+false_pos)    
            recall = float(true_pos) / float(total_pos)
            f1_erde = 2 * (precision * recall) / (precision + recall)
            _latencyweightedF1 = f1_erde*_speed
        else:
            _latencyweightedF1 = 0
            _speed = 0
            
        y_true = self.run_results['pred'].tolist() 
        y_pred_b = list(self.qrels_b.values()) 

        # Binary metrics
        accuracy = metrics.accuracy_score(y_true, y_pred_b)
        macro_precision = metrics.precision_score(y_true, y_pred_b, average='macro')
        macro_recall = metrics.recall_score(y_true, y_pred_b, average='macro')
        macro_f1 = metrics.f1_score(y_true, y_pred_b, average='macro') 
        micro_precision = metrics.precision_score(y_true, y_pred_b, average='micro')
        micro_recall = metrics.recall_score(y_true, y_pred_b, average='micro')
        micro_f1 = metrics.f1_score(y_true, y_pred_b, average='micro')

        print("BINARY METRICS: =============================")
        print("Accuracy:"+str(accuracy))
        print("Macro precision:"+str(macro_precision))
        print("Macro recall:"+str(macro_recall))
        print("Macro f1:"+str(macro_f1))
        print("Micro precision:"+str(micro_precision))
        print("Micro recall:"+str(micro_recall))
        print("Micro f1:"+str(micro_f1))

        print("LATENCY-BASED METRICS: =============================")
        print("ERDE_5:"+str(np.mean(erdes5))) 
        print("ERDE_50:"+str(np.mean(erdes50))) 
        print("Median latency:"+str(np.median(np.array(latency_tps)))) 
        print("Speed:"+str(_speed)) 
        print("latency-weightedF1:"+str(_latencyweightedF1)) 
        
        return {'Accuracy': accuracy, 'Macro_P': macro_precision, 'Macro_R': macro_recall,'Macro_F1': macro_f1,'Micro_P': micro_precision, 'Micro_R': micro_recall,
        'Micro_F1': micro_f1, 'ERDE5':np.mean(erdes5),'ERDE30': np.mean(erdes30),'ERDE50': np.mean(erdes50), 'latencyTP': np.median(np.array(latency_tps)), 
        'speed': _speed, 'latency-weightedF1': _latencyweightedF1}

    # Calculation of P@10, P@20, P@30, P@50
    def eval_performance_rank_based(self):
        print("===================================================")
        print("RANK-BASED EVALUATION:")
        ranks_at=[1,50,75] 
        rank_dit = {}
        for rank in ranks_at:
            print("Analizing ranking at round "+str(rank))
            rels_topk = [0,0,0,0] 
            self.run_results["label"] = self.qrels_b.values()
            self.run_results = self.run_results.sort_values(by=['pred'],ascending=False) 
            i = 0
            for index, r in self.run_results.iterrows():
                if i<10:
                    if r["pred"] == r['label']:
                        rels_topk[0] += 1
                        rels_topk[1] += 1
                        rels_topk[2] += 1
                        rels_topk[3] += 1
                elif i<20:
                    if r["pred"] == r['label']:
                        rels_topk[1] += 1
                        rels_topk[2] += 1
                        rels_topk[3] += 1
                elif i<30:
                    if r["pred"] == r['label']:
                        rels_topk[2] += 1
                        rels_topk[3] += 1
                elif i<50:
                    if r["pred"] == r['label']:
                        rels_topk[3] += 1
                else:
                    break
                i+=1
            p10 = float(rels_topk[0])/10.0
            p20 = float(rels_topk[1])/20.0
            p30 = float(rels_topk[2])/30.0
            p50 = float(rels_topk[3])/50.0

            print("PRECISION AT K: =============================")
            print("P@10:"+str(p10))
            print("P@20:"+str(p20))
            print("P@30:"+str(p30))
            print("P@50:"+str(p50))
            rank_dit[rank] = {"@10":p10,"@20":p20,"@30":p30,"@50":p50}
        return rank_dit


#############################################################################################
# Calculation of Regression metrics for Simple regression tasks
class ClassRegressionEvaluation():
    def __init__(self, task, data, qrels):
        self.run_results = data 
        self.qrels = read_qrels_regression(qrels)
        self.task = task

    def eval_performance(self):
        self.run_results = self.run_results.sort_values(by=['nick'])
        y_true = self.run_results['pred'].tolist() 
        
        y_pred_r = list(self.qrels.values()) 

        # Regression metrics
        _rmse = metrics.mean_squared_error(y_true, y_pred_r, sample_weight=None, multioutput='raw_values', squared=False)[0] 
        _pearson = np.corrcoef(y_true, y_pred_r)
        _pearson, _ = pearsonr(y_true, y_pred_r)

        print("REGRESSION METRICS: =============================")
        print("RMSE:"+str(_rmse))
        print("Pearson correlation coefficient:"+str(_pearson))

        return { 'RMSE:': _rmse, 'Pearson_coefficient': _pearson}

    # Calculation of P@10, P@20, P@30, P@50
    def eval_performance_rank_based(self):
        print("===================================================")
        print("RANK-BASED EVALUATION:")
        ranks_at=[1,25,50,75] 
        rank_dit = {}
        for rank in ranks_at:
            print("Analizing ranking at round "+str(rank))
            rels_topk = [0,0,0,0,0] 
            self.run_results_ = self.run_results[rank].sort_values(by=['nick'])
            self.run_results_["label"] = self.qrels.values()
            self.run_results_ = self.run_results_.sort_values(by=['pred'],ascending=False) 
            i = 0
            for index, r in self.run_results_.iterrows():
                if i<5:
                    if r["label"] == round(r["pred"],1):
                        rels_topk[0] += 1
                        rels_topk[1] += 1
                        rels_topk[2] += 1
                        rels_topk[3] += 1
                        rels_topk[4] += 1
                elif i<10:
                    if r['label'] == round(r["pred"],1):
                        rels_topk[1] += 1
                        rels_topk[2] += 1
                        rels_topk[3] += 1
                        rels_topk[4] += 1
                elif i<20:
                    if  r['label'] == round(r["pred"],1):
                        rels_topk[2] += 1
                        rels_topk[3] += 1
                        rels_topk[4] += 1
                elif i<30:
                    if  r['label'] == round(r["pred"],1):
                        rels_topk[3] += 1
                        rels_topk[4] += 1
                elif i<50:
                    if  r['label'] == round(r["pred"],1):
                        rels_topk[4] += 1
                else:
                    break
                i+=1
            p5 = float(rels_topk[0])/5.0
            p10 = float(rels_topk[1])/10.0
            p20 = float(rels_topk[2])/20.0
            p30 = float(rels_topk[3])/30.0
            p50 = float(rels_topk[4])/50.0

            print("PRECISION AT K: =============================")
            print("P@5:"+str(p5))
            print("P@10:"+str(p10))
            print("P@20:"+str(p20))
            print("P@30:"+str(p30))
            print("P@50:"+str(p50))
            rank_dit[rank] = {"@5":p5,"@10":p10,"@20":p20,"@30":p30,"@50":p50}
        return rank_dit


############################################################################
# Calculation of Binary metrics for Multiclass classification tasks
class BinaryMultiClassification():
    def __init__(self, task, data, qrels):
        self.run_results = data 
        self.qrels_b, self.qrels_multiclass  = read_qrels_multiclass(qrels)
        self.task = task
    pass

    def penalty(self,delay):
        if self.task == "1": # TCA
            p = 0.0411 # test
            p = 0.0292 # trial
        elif self.task == "2": # Depression
            p = 0.0326 # test
            p = 0.0179 # trial
        else: # Unkown
            p = 0.0308 # test
        pen = -1.0 + 2.0/(1+np.exp(-p*(delay-1)))
        return(pen)

    def n_pos(self):
        total_pos = 0
        for key in self.qrels_b:
            total_pos += self.qrels_b[key]
        return(total_pos)


    def eval_performance(self):
        print("===================================================")
        print("DECISION-BASED EVALUATION:") 
        self.run_results = self.run_results.sort_values(by=['nick'])
        total_pos=self.n_pos() # Total number of positive documents
        erdes5 = np.zeros(len(self.run_results))
        erdes30 = np.zeros(len(self.run_results))
        erdes50 = np.zeros(len(self.run_results))
        ierdes = 0
        true_pos = 0
        false_pos = 0
        latency_tps = list()
        penalty_tps = list()

        for index, r in self.run_results.iterrows():
            try:
                
                if ( self.qrels_b[ r['nick'] ] ==  r['pred_b'] ):
                    if ( r['pred_b'] == 1 ):
                        true_pos+=1
                        erdes5[ierdes]=1.0 - (1.0/(1.0+np.exp( (r["round"]+1) - 5.0)))
                        erdes30[ierdes]=1.0 - (1.0/(1.0+np.exp( (r["round"]+1) - 30.0)))
                        erdes50[ierdes]=1.0 - (1.0/(1.0+np.exp( (r["round"]+1) - 50.0)))
                        latency_tps.append(r["round"]+1)
                        penalty_tps.append(self.penalty(r["round"]+1))
                    else:
                        erdes5[ierdes]=0
                        erdes30[ierdes]=0
                        erdes50[ierdes]=0
                else:
                    if ( r['pred_b'] == 1 ):
                        false_pos+=1
                        erdes5[ierdes]=float(total_pos)/float(len(self.qrels_b))
                        erdes30[ierdes]=float(total_pos)/float(len(self.qrels_b))
                        erdes50[ierdes]=float(total_pos)/float(len(self.qrels_b))
                    else:
                        erdes5[ierdes]=1
                        erdes30[ierdes]=1
                        erdes50[ierdes]=1
            except KeyError:
                print("User does not appear in the qrels:"+r['nick'])
            ierdes+=1

        _speed = 1-np.median(np.array(penalty_tps))
        if true_pos != 0 :
            precision = float(true_pos) / float(true_pos+false_pos)    
            recall = float(true_pos) / float(total_pos)
            f1_erde = 2 * (precision * recall) / (precision + recall)
            _latencyweightedF1 = f1_erde*_speed
        else:
            _latencyweightedF1 = 0
            _speed = 0
            
        y_true = self.run_results['pred'].tolist()
        y_pred_b = list(self.qrels_multiclass.values())

        # Binary metrics
        accuracy = metrics.accuracy_score(y_true, y_pred_b)
        macro_precision = metrics.precision_score(y_true, y_pred_b, average='macro')
        macro_recall = metrics.recall_score(y_true, y_pred_b, average='macro')
        macro_f1 = metrics.f1_score(y_true, y_pred_b, average='macro')
        micro_precision = metrics.precision_score(y_true, y_pred_b, average='micro')
        micro_recall = metrics.recall_score(y_true, y_pred_b, average='micro')
        micro_f1 = metrics.f1_score(y_true, y_pred_b, average='micro')

        print("BINARY METRICS: =============================")
        print("Accuracy:"+str(accuracy))
        print("Macro precision:"+str(macro_precision))
        print("Macro recall:"+str(macro_recall))
        print("Macro f1:"+str(macro_f1))
        print("Micro precision:"+str(micro_precision))
        print("Micro recall:"+str(micro_recall))
        print("Micro f1:"+str(micro_f1))

        print("LATENCY-BASED METRICS: =============================")
        print("ERDE_5:"+str(np.mean(erdes5)))
        print("ERDE_50:"+str(np.mean(erdes50)))
        print("Median latency:"+str(np.median(np.array(latency_tps)))) 
        print("Speed:"+str(_speed)) 
        print("latency-weightedF1:"+str(_latencyweightedF1)) 
        
        return {'Accuracy': accuracy, 'Macro_P': macro_precision, 'Macro_R': macro_recall,'Macro_F1': macro_f1,'Micro_P': micro_precision, 'Micro_R': micro_recall,
        'Micro_F1': micro_f1, 'ERDE5':np.mean(erdes5),'ERDE30':np.mean(erdes30),'ERDE50': np.mean(erdes50), 'latencyTP': np.median(np.array(latency_tps)), 
        'speed': _speed, 'latency-weightedF1': _latencyweightedF1}
    
    # Calculation of P@10, P@20, P@30, P@50
    def eval_performance_rank_based(self):
        print("===================================================")
        print("PRECISION AT K - EVALUATION:")
        ranks_at=[1,50,75] 
        rank_dit = {}
        for rank in ranks_at:
            print("Analizing ranking at round "+str(rank))
            rels_topk = [0,0,0,0]
            self.run_results["label"] = self.qrels_b.values()
            self.run_results = self.run_results.sort_values(by=['pred_b'],ascending=False) 
            i = 0
            for index, r in self.run_results.iterrows():
                if i<10:
                    if r["pred_b"] == r['label']:
                        rels_topk[0] += 1
                        rels_topk[1] += 1
                        rels_topk[2] += 1
                        rels_topk[3] += 1
                elif i<20:
                    if r["pred_b"] == r['label']:
                        rels_topk[1] += 1
                        rels_topk[2] += 1
                        rels_topk[3] += 1
                elif i<30:
                    if r["pred_b"] == r['label']:
                        rels_topk[2] += 1
                        rels_topk[3] += 1
                elif i<50:
                    if r["pred_b"] == r['label']:
                        rels_topk[3] += 1
                else:
                    break
                i+=1
            p10 = float(rels_topk[0])/10.0
            p20 = float(rels_topk[1])/20.0
            p30 = float(rels_topk[2])/30.0
            p50 = float(rels_topk[3])/50.0

            print("PRECISION AT K: =============================")
            print("P@10:"+str(p10))
            print("P@20:"+str(p20))
            print("P@30:"+str(p30))
            print("P@50:"+str(p50))
            rank_dit[rank] = {"@10":p10,"@20":p20,"@30":p30,"@50":p50}
        return rank_dit


#######################################################################################
# Calculation of Regression metrics for Multi-output regression tasks
class ClassMultiRegressionEvaluation():

    def __init__(self, task, data, qrels):
        self.run_results = data 
        self.qrels = read_qrels_multioutput(qrels)
        self.task = task

    def eval_performance(self):
        self.run_results = self.run_results.sort_values(by=['nick'])
        y_true = self.run_results['pred'].tolist() 
        y_pred_r = list(self.qrels.values()) 

        # Regression metrics
        _rmse = metrics.mean_squared_error(y_true, y_pred_r, sample_weight=None, multioutput='raw_values', squared=False)[0]
        _pearson_sf, _ = pearsonr([item[0] for item in y_true] , [item[0] for item in y_pred_r])
        _pearson_sa, _ = pearsonr([item[1] for item in y_true] , [item[1] for item in y_pred_r])
        _pearson_so, _ = pearsonr([item[2] for item in y_true] , [item[2] for item in y_pred_r])
        _pearson_c, _ = pearsonr([item[3] for item in y_true] , [item[3] for item in y_pred_r])

        print("REGRESSION METRICS: =============================")
        print("RMSE:"+str(_rmse))
        print("Pearson correlation coefficient:")
        print("Pearson sf:"+str(_pearson_sf))
        print("Pearson sa:"+str(_pearson_sa))
        print("Pearson so:"+str(_pearson_so))
        print("Pearson c:"+str(_pearson_c))
        pearson = (_pearson_sf + _pearson_sa + _pearson_so + _pearson_c)/4
        return { 'RMSE:': _rmse, 'Pearson_mean': pearson,'Pearson_sf': _pearson_sf, 'Pearson_sa': _pearson_sa,'Pearson_so': _pearson_so,'Pearson_c': _pearson_c}
    
    # Calculation of P@10, P@20, P@30, P@50
    def eval_performance_rank_based(self):
        print("===================================================")
        print("PRECISION AT - EVALUATION:")
        ranks_at=[1,25,50,75] 
        rank_dit = {}
        for rank in ranks_at:
            print("Analizing ranking at round "+str(rank))
            self.run_results_ = self.run_results[rank].sort_values(by=['nick'])
            self.run_results_["label"] = self.qrels.values()
            self.run_results_ = self.run_results_.sort_values(by=['pred'],ascending=False) 
            p5 = 0
            p10 = 0
            p20 = 0
            p30 = 0
            p50 = 0 
            for j in range(0,4): 
                rels_topk = [0,0,0,0,0]
                i = 0
                for index, r in self.run_results_.iterrows():
                    if i<5:
                        if r['label'][j] == round(r["pred"][j],1):
                            rels_topk[0] += 1
                            rels_topk[1] += 1
                            rels_topk[2] += 1
                            rels_topk[3] += 1
                            rels_topk[4] += 1
                    elif i<10:
                        if r['label'][j] == round(r["pred"][j],1):
                            rels_topk[0] += 1
                            rels_topk[1] += 1
                            rels_topk[2] += 1
                            rels_topk[3] += 1
                    elif i<20:
                        if r['label'][j] == round(r["pred"][j],1):
                            rels_topk[1] += 1
                            rels_topk[2] += 1
                            rels_topk[3] += 1
                    elif i<30:
                        if r['label'][j] == round(r["pred"][j],1):
                            rels_topk[2] += 1
                            rels_topk[3] += 1
                    elif i<50:
                        if r['label'][j] == round(r["pred"][j],1):
                            rels_topk[3] += 1
                    else:
                        break
                    i+=1
                p5 += float(rels_topk[0])/5.0
                p10 += float(rels_topk[0])/10.0
                p20 += float(rels_topk[1])/20.0
                p30 += float(rels_topk[2])/30.0
                p50 += float(rels_topk[3])/50.0

            print("PRECISION AT K: =============================")
            print("P@5:"+str(p5/4))
            print("P@10:"+str(p10/4))
            print("P@20:"+str(p20/4))
            print("P@30:"+str(p30/4))
            print("P@50:"+str(p50/4))
            rank_dit[rank] = {"@5":p5/4,"@10":p10/4,"@20":p20/4,"@30":p30/4,"@50":p50/4}
        return rank_dit


# Class for calculating carbon emission values
class Emissions():
    def __init__(self, emissions_run) -> None:
        self.emissions_run = emissions_run
        self.aux = {}
        for key, value in emissions_run.items():
            self.aux[key] = 0
        pass

    # Update of values after a prediction has been made
    def update_emissions(self,emissions_round):
        # The values are accumulated in each round, so the difference is calculated to know the values for that round only
        for key, value in self.emissions_run.items():
            if key not in ["cpu_count","gpu_count","cpu_model","gpu_model", "ram_total_size"]:
                round_ = emissions_round[key] - self.aux[key]
            self.emissions_run[key].append(round_)
            self.aux[key] = emissions_round[key]

    # Calculation of final values after all predictions have been made
    def calculate_emissions(self):
        dict_ = {}
        for key, value in self.emissions_run.items():
            # Non-numerical values
            if key in ["cpu_count","gpu_count","cpu_model","gpu_model", "ram_total_size"]:
                dict_[key] = self.emissions_run[key][0]
            # Numerical values
            else:
                dict_[key+"_min"] = min(self.emissions_run[key])
                dict_[key+"_max"] = max(self.emissions_run[key])
                dict_[key+"_mean"] = sum(self.emissions_run[key])/len(self.emissions_run[key])
                dict_[key+"_var"] = np.var(self.emissions_run[key])
        return dict_