File size: 6,349 Bytes
3b90d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Ball Tracking Module using Kalman Filter.

This module implements a Kalman filter-based tracker for smoothing
and predicting tennis ball positions across video frames.
"""

import numpy as np
from typing import Optional, Tuple, List
from filterpy.kalman import KalmanFilter


class BallTracker:
    """
    Kalman filter-based tracker for tennis ball position and velocity.

    The tracker maintains state estimates for:
    - Position (x, y)
    - Velocity (vx, vy)

    Attributes:
        dt (float): Time step between frames (1/fps)
        process_noise (float): Process noise covariance
        measurement_noise (float): Measurement noise covariance
        max_missing_frames (int): Maximum frames without detection before reset
    """

    def __init__(
        self,
        dt: float = 1.0 / 30.0,
        process_noise: float = 0.1,
        measurement_noise: float = 10.0,
        max_missing_frames: int = 10
    ):
        """
        Initialize the ball tracker.

        Args:
            dt: Time step between frames (seconds)
            process_noise: Process noise standard deviation
            measurement_noise: Measurement noise standard deviation
            max_missing_frames: Max consecutive frames without detection
        """
        self.dt = dt
        self.process_noise = process_noise
        self.measurement_noise = measurement_noise
        self.max_missing_frames = max_missing_frames

        # Initialize Kalman filter
        self.kf = self._create_kalman_filter()

        # Tracking state
        self.initialized = False
        self.missing_frames = 0
        self.trajectory = []  # List of (x, y, vx, vy, frame_num)
        self.frame_count = 0

    def _create_kalman_filter(self) -> KalmanFilter:
        """
        Create and configure a Kalman filter for 2D position tracking.

        State vector: [x, y, vx, vy]
        Measurement vector: [x, y]

        Returns:
            Configured KalmanFilter instance
        """
        kf = KalmanFilter(dim_x=4, dim_z=2)

        # State transition matrix (constant velocity model)
        kf.F = np.array([
            [1, 0, self.dt, 0],
            [0, 1, 0, self.dt],
            [0, 0, 1, 0],
            [0, 0, 0, 1]
        ])

        # Measurement matrix (observe position only)
        kf.H = np.array([
            [1, 0, 0, 0],
            [0, 1, 0, 0]
        ])

        # Measurement noise covariance
        kf.R = np.eye(2) * self.measurement_noise

        # Process noise covariance
        q = self.process_noise
        kf.Q = np.array([
            [q * self.dt**4 / 4, 0, q * self.dt**3 / 2, 0],
            [0, q * self.dt**4 / 4, 0, q * self.dt**3 / 2],
            [q * self.dt**3 / 2, 0, q * self.dt**2, 0],
            [0, q * self.dt**3 / 2, 0, q * self.dt**2]
        ])

        # Initial state covariance
        kf.P = np.eye(4) * 100

        return kf

    def update(
        self,
        measurement: Optional[Tuple[float, float]] = None
    ) -> Optional[Tuple[float, float, float, float]]:
        """
        Update tracker with a new measurement or predict if no detection.

        Args:
            measurement: Ball center position as (x, y), or None if not detected

        Returns:
            Estimated state as (x, y, vx, vy) or None if tracker not initialized
        """
        self.frame_count += 1

        if measurement is not None:
            # Detection available
            if not self.initialized:
                # Initialize tracker with first detection
                self.kf.x = np.array([
                    measurement[0],
                    measurement[1],
                    0.0,
                    0.0
                ])
                self.initialized = True
                self.missing_frames = 0
            else:
                # Update with measurement
                z = np.array([measurement[0], measurement[1]])
                self.kf.predict()
                self.kf.update(z)
                self.missing_frames = 0

            # Record trajectory
            x, y, vx, vy = self.kf.x
            self.trajectory.append((
                float(x), float(y), float(vx), float(vy), self.frame_count
            ))

            return (float(x), float(y), float(vx), float(vy))

        else:
            # No detection - predict only
            if self.initialized:
                self.kf.predict()
                self.missing_frames += 1

                # Reset if too many missing frames
                if self.missing_frames > self.max_missing_frames:
                    self.reset()
                    return None

                # Return prediction
                x, y, vx, vy = self.kf.x
                self.trajectory.append((
                    float(x), float(y), float(vx), float(vy), self.frame_count
                ))
                return (float(x), float(y), float(vx), float(vy))

            return None

    def reset(self):
        """Reset tracker to uninitialized state."""
        self.kf = self._create_kalman_filter()
        self.initialized = False
        self.missing_frames = 0

    def get_trajectory(self) -> List[Tuple[float, float, float, float, int]]:
        """
        Get the complete trajectory history.

        Returns:
            List of trajectory points as (x, y, vx, vy, frame_num)
        """
        return self.trajectory

    def get_speed(self, state: Tuple[float, float, float, float]) -> float:
        """
        Calculate speed from velocity components.

        Args:
            state: Tracker state as (x, y, vx, vy)

        Returns:
            Speed in pixels per second
        """
        _, _, vx, vy = state
        speed = np.sqrt(vx**2 + vy**2) / self.dt
        return float(speed)

    def get_last_n_positions(self, n: int = 20) -> List[Tuple[float, float]]:
        """
        Get the last N tracked positions for trail visualization.

        Args:
            n: Number of recent positions to return

        Returns:
            List of (x, y) coordinates
        """
        if len(self.trajectory) == 0:
            return []

        recent = self.trajectory[-n:]
        return [(x, y) for x, y, _, _, _ in recent]

    def is_initialized(self) -> bool:
        """Check if tracker has been initialized with a detection."""
        return self.initialized