File size: 20,316 Bytes
0713000
 
 
 
98e4936
40200a0
b1c3b85
0713000
 
 
98e4936
b1c3b85
0713000
 
 
 
 
 
2446ce1
98e4936
 
 
804fd09
0713000
 
4dbc666
6ec47b5
0713000
 
 
 
 
 
 
 
 
4dbc666
0713000
 
 
 
 
 
 
4dbc666
0713000
 
 
4e3063d
 
 
 
 
 
 
 
0713000
 
 
 
 
 
 
2446ce1
0713000
 
 
 
 
 
 
 
e245dba
 
 
0713000
 
 
 
 
 
 
 
2446ce1
0713000
 
 
4e3063d
2446ce1
4e3063d
 
 
 
 
0713000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dbc666
 
 
 
 
 
 
 
 
 
 
 
0713000
 
 
 
 
 
 
 
 
 
4dbc666
0713000
4dbc666
0713000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40200a0
0713000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dbc666
0713000
 
 
 
 
 
 
2446ce1
0713000
 
2446ce1
0713000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446ce1
0713000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98e4936
0713000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea4e4c
0713000
 
804fd09
 
 
0713000
d6a7dfe
0713000
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
"""
VibeVoice Gradio Demo - High-Quality Dialogue Generation Interface with Streaming Support
"""

import argparse, os, tempfile
import torch, spaces
import gradio as gr

from transformers.utils import logging
from transformers import set_seed
from cached_path import cached_path
from model import VibeVoiceDemo

logging.set_verbosity_info()
logger = logging.get_logger(__name__)



DEFAULT_NUM_SPEAKERS = 1
model_local_dir= str(cached_path("hf://microsoft/VibeVoice-1.5B"))
#model_local_dir= "./ckpts/vibevoice"
#snapshot_download(repo_id="microsoft/VibeVoice-1.5B", local_dir=model_local_dir)

def create_demo_interface(demo_instance: VibeVoiceDemo):
    """Create the Gradio interface with streaming support."""

    custom_css = ""
    with gr.Blocks(
        title="VibeVoice - AI Podcast Generator",
        css=custom_css,
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="purple",
            neutral_hue="slate",
        )
    ) as interface:

        # Header
        gr.HTML("""
        <div class="main-header">
            <h1>πŸŽ™οΈ Vibe Podcasting </h1>
            <p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
        </div>
        """)

        with gr.Row():
            # Left column - Settings
            with gr.Column(scale=1, elem_classes="settings-card"):

                def process_and_refresh_voices(uploaded_files: list[tempfile._TemporaryFileWrapper]):
                    if not uploaded_files: return [gr.update() for _ in speaker_selections] + [None]
                    for f in uploaded_files: 
                        demo_instance.available_voices[os.path.basename(f.name)] = f.name
                    new_choices = list(demo_instance.available_voices.keys())
                    return [gr.update(choices=new_choices) for _ in speaker_selections] + [None]

                gr.Markdown("### πŸŽ›οΈ **Podcast Settings**")
                
                # Number of speakers
                num_speakers = gr.Slider(
                    minimum=1,
                    maximum=4,
                    step=1,
                    value=DEFAULT_NUM_SPEAKERS,
                    label="Number of Speakers",
                    elem_classes="slider-container"
                )
                
                # Speaker selection
                gr.Markdown("### 🎭 **Speaker Selection**")
                
                available_speaker_names = list(demo_instance.available_voices.keys())
                #default_speakers = available_speaker_names[:4] if len(available_speaker_names) >= 4 else available_speaker_names
                #default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
                default_speakers = available_speaker_names

                speaker_selections = []
                for i in range(4):
                    default_value = default_speakers[i] if i < len(default_speakers) else None
                    speaker = gr.Dropdown(
                        choices=available_speaker_names,
                        value=default_value,
                        label=f"Speaker {i+1}",
                        visible=(i < DEFAULT_NUM_SPEAKERS),  # Initially show only first 2 speakers
                        elem_classes="speaker-item"
                    )
                    speaker_selections.append(speaker)

                with gr.Accordion("🎀 Upload Custom Voices", open=True):
                    upload_audio = gr.File(label="Upload Voice Samples", file_count="multiple", file_types=["audio"])
                    process_upload_btn = gr.Button("Add Uploaded Voices to Speaker Selection")
                process_upload_btn.click(fn=process_and_refresh_voices, inputs=upload_audio, outputs=speaker_selections + [upload_audio])


                # Advanced settings
                gr.Markdown("### βš™οΈ **Advanced Settings**")
                
                # Sampling parameters (contains all generation settings)
                with gr.Accordion("Generation Parameters", open=False):
                    cfg_scale = gr.Slider(
                        minimum=1.0,
                        maximum=2.0,
                        value=1.3,
                        step=0.05,
                        label="CFG Scale (Guidance Strength)",
                        # info="Higher values increase adherence to text",
                        elem_classes="slider-container"
                    )
                    disable_voice_cloning = gr.Checkbox(
                        value=False,
                        label="Disable voice cloning (skip conditioning voice prompts)",
                        info="When enabled, sets is_prefill=False so the model ignores provided speaker audio."
                    )
                
            # Right column - Generation
            with gr.Column(scale=2, elem_classes="generation-card"):
                gr.Markdown("### πŸ“ **Script Input**")
                
                script_input = gr.Textbox(
                    label="Conversation Script",
                    placeholder="""Enter your podcast script here. You can format it as:

Speaker 1: Welcome to our podcast today!
Speaker 2: Thanks for having me. I'm excited to discuss...

Or paste text directly and it will auto-assign speakers.""",
                    lines=12,
                    max_lines=20,
                    elem_classes="script-input"
                )
                
                # Button row with Random Example on the left and Generate on the right
                with gr.Row():
                    # Random example button (now on the left)
                    random_example_btn = gr.Button(
                        "🎲 Random Example",
                        size="lg",
                        variant="secondary",
                        elem_classes="random-btn",
                        scale=1  # Smaller width
                    )
                    
                    # Generate button (now on the right)
                    generate_btn = gr.Button(
                        "πŸš€ Generate Podcast",
                        size="lg",
                        variant="primary",
                        elem_classes="generate-btn",
                        scale=2  # Wider than random button
                    )
                
                # Stop button
                stop_btn = gr.Button(
                    "πŸ›‘ Stop Generation",
                    size="lg",
                    variant="stop",
                    elem_classes="stop-btn",
                    visible=False
                )
                
                # Streaming status indicator
                streaming_status = gr.HTML(
                    value="""
                    <div style="background: linear-gradient(135deg, #dcfce7 0%, #bbf7d0 100%); 
                                border: 1px solid rgba(34, 197, 94, 0.3); 
                                border-radius: 8px; 
                                padding: 0.75rem; 
                                margin: 0.5rem 0;
                                text-align: center;
                                font-size: 0.9rem;
                                color: #166534;">
                        <span class="streaming-indicator"></span>
                        <strong>LIVE STREAMING</strong> - Audio is being generated in real-time
                    </div>
                    """,
                    visible=False,
                    elem_id="streaming-status"
                )
                
                # Output section
                gr.Markdown("### 🎡 **Generated Podcast**")

                # Complete audio output (non-streaming)
                complete_audio_output = gr.Audio(
                    label="Complete Podcast",
                    type="numpy",
                    elem_classes="audio-output complete-audio-section",
                    streaming=False,  # Non-streaming mode
                    autoplay=False,
                    show_download_button=True,  # Explicitly show download button
                    #visible=False  # Initially hidden, shown when audio is ready
                )

                # Streaming audio output (outside of tabs for simpler handling)
                audio_output = gr.Audio(
                    label="Streaming Audio (Real-time)",
                    type="numpy",
                    elem_classes="audio-output",
                    streaming=True,  # Enable streaming mode
                    autoplay=True,
                    show_download_button=False,  # Explicitly show download button
                    visible=True
                )

                gr.Markdown("""
                *πŸ’‘ **Streaming**: Audio plays as it's being generated (may have slight pauses)*  
                *πŸ’‘ **Complete Audio**: Will appear below after generation finishes*
                """)
                
                # Generation log
                log_output = gr.Textbox(
                    label="Generation Log",
                    lines=8,
                    max_lines=15,
                    interactive=False,
                    elem_classes="log-output"
                )
        
        def update_speaker_visibility(num_speakers):
            updates = []
            for i in range(4):
                updates.append(gr.update(visible=(i < num_speakers)))
            return updates
        
        num_speakers.change(
            fn=update_speaker_visibility,
            inputs=[num_speakers],
            outputs=speaker_selections
        )
        
        # Main generation function with streaming
        @spaces.GPU
        def generate_podcast_wrapper(num_speakers, script, speaker_1, speaker_2, speaker_3, speaker_4, cfg_scale, disable_voice_cloning):
            """Wrapper function to handle the streaming generation call."""
            try:
                speakers = [speaker_1, speaker_2, speaker_3, speaker_4]

                # Clear outputs and reset visibility at start
                yield None, gr.update(value=None, visible=False), "πŸŽ™οΈ Starting generation...", gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)

                # The generator will yield multiple times
                final_log = "Starting generation..."

                for streaming_audio, complete_audio, log, streaming_visible in demo_instance.generate_podcast_streaming(
                    num_speakers=int(num_speakers),
                    script=script,
                    speaker_1=speakers[0],
                    speaker_2=speakers[1],
                    speaker_3=speakers[2],
                    speaker_4=speakers[3],
                    cfg_scale=cfg_scale,
                    disable_voice_cloning=disable_voice_cloning
                ):
                    final_log = log

                    # Check if we have complete audio (final yield)
                    if complete_audio is not None:
                        # Final state: clear streaming, show complete audio
                        yield None, gr.update(value=complete_audio, visible=True), log, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
                    else:
                        # Streaming state: update streaming audio only
                        if streaming_audio is not None:
                            yield streaming_audio, None, log, streaming_visible, gr.update(visible=False), gr.update(visible=True)
                        else:
                            # No new audio, just update status
                            yield None, None, log, streaming_visible, gr.update(visible=False), gr.update(visible=True)

            except Exception as e:
                error_msg = f"❌ A critical error occurred in the wrapper: {str(e)}"
                print(error_msg)
                import traceback
                traceback.print_exc()
                # Reset button states on error
                yield None, gr.update(value=None, visible=False), error_msg, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
        
        def stop_generation_handler():
            """Handle stopping generation."""
            demo_instance.stop_audio_generation()
            # Return values for: log_output, streaming_status, generate_btn, stop_btn
            return "πŸ›‘ Generation stopped.", gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
        
        # Add a clear audio function
        def clear_audio_outputs():
            """Clear both audio outputs before starting new generation."""
            return None, None

        # Connect generation button with streaming outputs
        generate_btn.click(
            fn=clear_audio_outputs,
            inputs=[],
            outputs=[audio_output, complete_audio_output],
            queue=False
        ).then(  # Immediate UI update to hide Generate, show Stop (non-queued)
            fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
            inputs=[],
            outputs=[generate_btn, stop_btn],
            queue=False
        ).then(
            fn=generate_podcast_wrapper,
            inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale, disable_voice_cloning],
            outputs=[audio_output, complete_audio_output, log_output, streaming_status, generate_btn, stop_btn],
            queue=True  # Enable Gradio's built-in queue
        )
        
        # Connect stop button
        stop_btn.click(
            fn=stop_generation_handler,
            inputs=[],
            outputs=[log_output, streaming_status, generate_btn, stop_btn],
            queue=False  # Don't queue stop requests
        ).then(
            # Clear both audio outputs after stopping
            fn=lambda: (None, None),
            inputs=[],
            outputs=[audio_output, complete_audio_output],
            queue=False
        )
        
        # Function to randomly select an example
        def load_random_example():
            """Randomly select and load an example script."""
            import random
            
            # Get available examples
            if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
                example_scripts = demo_instance.example_scripts
            else:
                # Fallback to default
                example_scripts = [
                    [2, "Speaker 0: Welcome to our AI podcast demonstration!\nSpeaker 1: Thanks for having me. This is exciting!"]
                ]
            
            # Randomly select one
            if example_scripts:
                selected = random.choice(example_scripts)
                num_speakers_value = selected[0]
                script_value = selected[1]
                
                # Return the values to update the UI
                return num_speakers_value, script_value
            
            # Default values if no examples
            return 2, ""
        
        # Connect random example button
        random_example_btn.click(
            fn=load_random_example,
            inputs=[],
            outputs=[num_speakers, script_input],
            queue=False  # Don't queue this simple operation
        )
        
        # Add usage tips
        gr.Markdown("""
        ### πŸ’‘ **Usage Tips**
        
        - Click **πŸš€ Generate Podcast** to start audio generation
        - **Live Streaming** tab shows audio as it's generated (may have slight pauses)
        - **Complete Audio** tab provides the full, uninterrupted podcast after generation
        - During generation, you can click **πŸ›‘ Stop Generation** to interrupt the process
        - The streaming indicator shows real-time generation progress
        """)
        
        # Add example scripts
        gr.Markdown("### πŸ“š **Example Scripts**")
        
        # Use dynamically loaded examples if available, otherwise provide a default
        if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
            example_scripts = demo_instance.example_scripts
        else:
            # Fallback to a simple default example if no scripts loaded
            example_scripts = [
                [1, "Speaker 1: Welcome to our AI podcast demonstration! This is a sample script showing how VibeVoice can generate natural-sounding speech."]
            ]
        
        gr.Examples(
            examples=example_scripts,
            inputs=[num_speakers, script_input],
            label="Try these example scripts:"
        )

        # --- Risks & limitations (footer) ---
        gr.Markdown(
            """
## Risks and limitations

While efforts have been made to optimize it through various techniques, it may still produce outputs that are unexpected, biased, or inaccurate. VibeVoice inherits any biases, errors, or omissions produced by its base model (specifically, Qwen2.5 1.5b in this release).
Potential for Deepfakes and Disinformation: High-quality synthetic speech can be misused to create convincing fake audio content for impersonation, fraud, or spreading disinformation. Users must ensure transcripts are reliable, check content accuracy, and avoid using generated content in misleading ways. Users are expected to use the generated content and to deploy the models in a lawful manner, in full compliance with all applicable laws and regulations in the relevant jurisdictions. It is best practice to disclose the use of AI when sharing AI-generated content.
            """,
            elem_classes="generation-card",  # ε―ι€‰οΌšε€η”¨ε‘η‰‡ζ ·εΌ
        )
    return interface


def parse_args():
    parser = argparse.ArgumentParser(description="VibeVoice Gradio Demo")
    parser.add_argument(
        "--model_path",
        type=str,
        default=model_local_dir,
        help="Path to the VibeVoice model directory",
    )
    parser.add_argument(
        "--device",
        type=str,
        default=("cuda" if torch.cuda.is_available() else ("mps" if torch.backends.mps.is_available() else "cpu")),
        help="Device for inference: cuda | mps | cpu",
    )
    parser.add_argument(
        "--inference_steps",
        type=int,
        default=10,
        help="Number of inference steps for DDPM (not exposed to users)",
    )
    parser.add_argument(
        "--share",
        action="store_true",
        help="Share the demo publicly via Gradio",
    )
    parser.add_argument(
        "--port",
        type=int,
        default=7860,
        help="Port to run the demo on",
    )
    parser.add_argument(
        "--checkpoint_path",
        type=str,
        default=None,
        help="Path to a fine-tuned checkpoint directory containing LoRA adapters (optional)",
    )
    
    return parser.parse_args()


def main():
    """Main function to run the demo."""
    args = parse_args()
    
    set_seed(42)  # Set a fixed seed for reproducibility

    print("πŸŽ™οΈ Initializing VibeVoice Demo with Streaming Support...")
    
    # Initialize demo instance
    demo_instance = VibeVoiceDemo(
        model_path=args.model_path,
        device=args.device,
        inference_steps=args.inference_steps,
        adapter_path=args.checkpoint_path,
    )
    
    # Create interface
    interface = create_demo_interface(demo_instance)
    
    print(f"πŸš€ Launching demo on port {args.port}")
    print(f"πŸ“ Model path: {args.model_path}")
    print(f"🎭 Available voices: {len(demo_instance.available_voices)}")
    print(f"πŸ”΄ Streaming mode: ENABLED")
    print(f"πŸ”’ Session isolation: ENABLED")
    
    # Launch the interface
    try:
        interface.queue(
            max_size=10,  # Maximum queue size
            default_concurrency_limit=1  # Process one request at a time
        ).launch(
            #share= args.share,
            #server_port=args.port,
            #server_name="0.0.0.0" if args.share else "127.0.0.1",
            show_error=True,
            mcp_server=True,
        )
    except KeyboardInterrupt:
        print("\nπŸ›‘ Shutting down gracefully...")
    except Exception as e:
        print(f"❌ Server error: {e}")
        raise


if __name__ == "__main__":
    main()