File size: 28,889 Bytes
b1c3b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e245dba
 
1e4e16f
b1c3b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4e16f
 
b1c3b85
 
 
1e4e16f
b1c3b85
 
1e4e16f
b1c3b85
1e4e16f
 
 
b1c3b85
 
 
 
1e4e16f
b1c3b85
1e4e16f
b1c3b85
 
1e4e16f
b1c3b85
 
 
 
 
1e4e16f
b1c3b85
 
 
1e4e16f
b1c3b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4e16f
b1c3b85
 
 
 
 
1e4e16f
b1c3b85
 
 
 
 
 
 
 
 
1e4e16f
b1c3b85
 
 
 
 
1e4e16f
 
b1c3b85
 
 
1e4e16f
 
b1c3b85
 
1e4e16f
b1c3b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import threading, librosa, torch
import gradio as gr
import numpy as np
import soundfile as sf

from typing import Iterator, Optional
import os, time, traceback

from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.modular.lora_loading import load_lora_assets
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from vibevoice.modular.streamer import AudioStreamer



def convert_to_16_bit_wav(data):
    # Check if data is a tensor and move to cpu
    if torch.is_tensor(data):
        data = data.detach().cpu().numpy()
    
    # Ensure data is numpy array
    data = np.array(data)

    # Normalize to range [-1, 1] if it's not already
    if np.max(np.abs(data)) > 1.0:
        data = data / np.max(np.abs(data))
    
    # Scale to 16-bit integer range
    data = (data * 32767).astype(np.int16)
    return data

class VibeVoiceDemo:
    voices_dir = os.path.join(os.path.dirname(__file__), "static", "voices")
    examples_dir = os.path.join(os.path.dirname(__file__), "static", "text_examples")

    def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5, adapter_path: Optional[str] = None):
        """Initialize the VibeVoice demo with model loading."""
        self.model_path = model_path
        self.device = device
        self.inference_steps = inference_steps
        self.adapter_path = adapter_path
        self.loaded_adapter_root: Optional[str] = None
        self.is_generating = False  # Track generation state
        self.stop_generation = False  # Flag to stop generation
        self.current_streamer = None  # Track current audio streamer
        self.load_model()
        self.setup_voice_presets()
        self.load_example_scripts()  # Load example scripts
        
    def load_model(self):
        """Load the VibeVoice model and processor."""
        print(f"Loading processor & model from {self.model_path}")
        self.loaded_adapter_root = None
        # Normalize potential 'mpx'
        if self.device.lower() == "mpx":
            print("Note: device 'mpx' detected, treating it as 'mps'.")
            self.device = "mps"
        if self.device == "mps" and not torch.backends.mps.is_available():
            print("Warning: MPS not available. Falling back to CPU.")
            self.device = "cpu"
        print(f"Using device: {self.device}")
        # Load processor
        self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
        # Decide dtype & attention
        if self.device == "mps":
            load_dtype = torch.float32
            attn_impl_primary = "sdpa"
        elif self.device == "cuda":
            load_dtype = torch.bfloat16
            attn_impl_primary = "flash_attention_2"
        else:
            load_dtype = torch.float32
            attn_impl_primary = "sdpa"
        print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}")
        # Load model
        try:
            if self.device == "mps":
                self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
                    self.model_path,
                    torch_dtype=load_dtype,
                    attn_implementation=attn_impl_primary,
                    device_map=None,
                )
                self.model.to("mps")
            elif self.device == "cuda":
                self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
                    self.model_path,
                    torch_dtype=load_dtype,
                    device_map="cuda",
                    attn_implementation=attn_impl_primary,
                )
            else:
                self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
                    self.model_path,
                    torch_dtype=load_dtype,
                    device_map="cpu",
                    attn_implementation=attn_impl_primary,
                )
        except Exception as e:
            if attn_impl_primary == 'flash_attention_2':
                print(f"[ERROR] : {type(e).__name__}: {e}")
                print(traceback.format_exc())
                fallback_attn = "sdpa"
                print(f"Falling back to attention implementation: {fallback_attn}")
                self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
                    self.model_path,
                    torch_dtype=load_dtype,
                    device_map=(self.device if self.device in ("cuda", "cpu") else None),
                    attn_implementation=fallback_attn,
                )
                if self.device == "mps":
                    self.model.to("mps")
            else:
                raise e
        if self.adapter_path:
            print(f"Loading fine-tuned assets from {self.adapter_path}")
            report = load_lora_assets(self.model, self.adapter_path)
            loaded_components = [
                name for name, loaded in (
                    ("language LoRA", report.language_model),
                    ("diffusion head LoRA", report.diffusion_head_lora),
                    ("diffusion head weights", report.diffusion_head_full),
                    ("acoustic connector", report.acoustic_connector),
                    ("semantic connector", report.semantic_connector),
                )
                if loaded
            ]
            if loaded_components:
                print(f"Loaded components: {', '.join(loaded_components)}")
            else:
                print("Warning: no adapter components were loaded; check the checkpoint path.")
            if report.adapter_root is not None:
                self.loaded_adapter_root = str(report.adapter_root)
                print(f"Adapter assets resolved to: {self.loaded_adapter_root}")
            else:
                self.loaded_adapter_root = self.adapter_path

        self.model.eval()
        
        # Use SDE solver by default
        self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
            self.model.model.noise_scheduler.config, 
            algorithm_type='sde-dpmsolver++',
            beta_schedule='squaredcos_cap_v2'
        )
        self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
        
        if hasattr(self.model.model, 'language_model'):
            print(f"Language model attention: {self.model.model.language_model.config._attn_implementation}")
    
    def setup_voice_presets(self):
        """Setup voice presets by scanning the voices directory."""
        # Check if voices directory exists
        if not os.path.exists(self.voices_dir):
            print(f"Warning: Voices directory not found at {self.voices_dir}")
            self.voice_presets = {}
            self.available_voices = {}
            return

        # Scan for all WAV files in the voices directory
        self.voice_presets = {}

        # Get all .wav files in the voices directory
        wav_files = [f for f in os.listdir(self.voices_dir) 
                    if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')) and os.path.isfile(os.path.join(self.voices_dir, f))]

        # Create dictionary with filename (without extension) as key
        for wav_file in wav_files:
            # Remove .wav extension to get the name
            name = os.path.splitext(wav_file)[0]
            full_path = os.path.join(self.voices_dir, wav_file)
            self.voice_presets[name] = full_path

        # Sort the voice presets alphabetically by name for better UI
        self.voice_presets = dict(sorted(self.voice_presets.items()))

        # Filter out voices that don't exist (this is now redundant but kept for safety)
        self.available_voices = {
            name: path for name, path in self.voice_presets.items()
            if os.path.exists(path)
        }

        if not self.available_voices:
            raise gr.Error("No voice presets found. Please add .wav files to the demo/voices directory.")
        
        print(f"Found {len(self.available_voices)} voice files in {self.voices_dir}")
        print(f"Available voices: {', '.join(self.available_voices.keys())}")
    
    def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
        """Read and preprocess audio file."""
        try:
            wav, sr = sf.read(audio_path)
            if len(wav.shape) > 1:
                wav = np.mean(wav, axis=1)
            if sr != target_sr:
                wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
            return wav
        except Exception as e:
            print(f"Error reading audio {audio_path}: {e}")
            return np.array([])
    
    def generate_podcast_streaming(self, 
                                 num_speakers: int,
                                 script: str,
                                 speaker_1: str = None,
                                 speaker_2: str = None,
                                 speaker_3: str = None,
                                 speaker_4: str = None,
                                 cfg_scale: float = 1.3,
                                 disable_voice_cloning: bool = False) -> Iterator[tuple]:
        try:
            
            # Reset stop flag and set generating state
            self.stop_generation = False
            self.is_generating = True
            
            # Validate inputs
            if not script.strip():
                self.is_generating = False
                raise gr.Error("Error: Please provide a script.")

            # Defend against common mistake
            script = script.replace("’", "'")
            
            if num_speakers < 1 or num_speakers > 4:
                self.is_generating = False
                raise gr.Error("Error: Number of speakers must be between 1 and 4.")
            
            # Collect selected speakers
            selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
            
            # Validate speaker selections
            for i, speaker in enumerate(selected_speakers):
                if not speaker or speaker not in self.available_voices:
                    self.is_generating = False
                    raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
            
            voice_cloning_enabled = not disable_voice_cloning

            # Build initial log
            log = f"πŸŽ™οΈ Generating podcast with {num_speakers} speakers\n"
            log += f"πŸ“Š Parameters: CFG Scale={cfg_scale}, Inference Steps={self.inference_steps}\n"
            log += f"🎭 Speakers: {', '.join(selected_speakers)}\n"
            log += f"πŸ”Š Voice cloning: {'Enabled' if voice_cloning_enabled else 'Disabled'}\n"
            if self.loaded_adapter_root:
                log += f"🧩 LoRA: {self.loaded_adapter_root}\n"
            
            # Check for stop signal
            if self.stop_generation:
                self.is_generating = False
                yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return
            
            # Load voice samples when voice cloning is enabled
            voice_samples = None
            if voice_cloning_enabled:
                voice_samples = []
                for speaker_name in selected_speakers:
                    audio_path = self.available_voices[speaker_name]
                    audio_data = self.read_audio(audio_path)
                    if len(audio_data) == 0:
                        self.is_generating = False
                        raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
                    voice_samples.append(audio_data)
            
            # log += f"βœ… Loaded {len(voice_samples)} voice samples\n"
            
            # Check for stop signal
            if self.stop_generation:
                self.is_generating = False
                yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return
            
            # Parse script to assign speaker ID's
            lines = script.strip().split('\n')
            formatted_script_lines = []
            
            for line in lines:
                line = line.strip()
                if not line:
                    continue
                    
                # Check if line already has speaker format
                if line.startswith('Speaker ') and ':' in line:
                    formatted_script_lines.append(line)
                else:
                    # Auto-assign to speakers in rotation
                    speaker_id = len(formatted_script_lines) % num_speakers
                    formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
            
            formatted_script = '\n'.join(formatted_script_lines)
            log += f"πŸ“ Formatted script with {len(formatted_script_lines)} turns\n\n"
            log += "πŸ”„ Processing with VibeVoice (streaming mode)...\n"
            
            # Check for stop signal before processing
            if self.stop_generation:
                self.is_generating = False
                yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return
            
            start_time = time.time()
            
            processor_kwargs = {
                "text": [formatted_script],
                "padding": True,
                "return_tensors": "pt",
                "return_attention_mask": True,
            }
            processor_kwargs["voice_samples"] = [voice_samples] if voice_samples is not None else None

            inputs = self.processor(**processor_kwargs)
            # Move tensors to device
            target_device = self.device if self.device in ("cuda", "mps") else "cpu"
            for k, v in inputs.items():
                if torch.is_tensor(v):
                    inputs[k] = v.to(target_device)
            
            # Create audio streamer
            audio_streamer = AudioStreamer(
                batch_size=1,
                stop_signal=None,
                timeout=None
            )
            
            # Store current streamer for potential stopping
            self.current_streamer = audio_streamer
            
            # Start generation in a separate thread
            generation_thread = threading.Thread(
                target=self._generate_with_streamer,
                args=(inputs, cfg_scale, audio_streamer, voice_cloning_enabled)
            )
            generation_thread.start()
            
            # Wait for generation to actually start producing audio
            time.sleep(1)  # Reduced from 3 to 1 second

            # Check for stop signal after thread start
            if self.stop_generation:
                audio_streamer.end()
                generation_thread.join(timeout=5.0)  # Wait up to 5 seconds for thread to finish
                self.is_generating = False
                yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return

            # Collect audio chunks as they arrive
            sample_rate = 24000
            all_audio_chunks = []  # For final statistics
            pending_chunks = []  # Buffer for accumulating small chunks
            chunk_count = 0
            last_yield_time = time.time()
            min_yield_interval = 15 # Yield every 15 seconds
            min_chunk_size = sample_rate * 30 # At least 2 seconds of audio
            
            # Get the stream for the first (and only) sample
            audio_stream = audio_streamer.get_stream(0)
            
            has_yielded_audio = False
            has_received_chunks = False  # Track if we received any chunks at all
            
            for audio_chunk in audio_stream:
                # Check for stop signal in the streaming loop
                if self.stop_generation:
                    audio_streamer.end()
                    break
                    
                chunk_count += 1
                has_received_chunks = True  # Mark that we received at least one chunk
                
                # Convert tensor to numpy
                if torch.is_tensor(audio_chunk):
                    # Convert bfloat16 to float32 first, then to numpy
                    if audio_chunk.dtype == torch.bfloat16:
                        audio_chunk = audio_chunk.float()
                    audio_np = audio_chunk.cpu().numpy().astype(np.float32)
                else:
                    audio_np = np.array(audio_chunk, dtype=np.float32)
                
                # Ensure audio is 1D and properly normalized
                if len(audio_np.shape) > 1:
                    audio_np = audio_np.squeeze()
                
                # Convert to 16-bit for Gradio
                audio_16bit = convert_to_16_bit_wav(audio_np)
                
                # Store for final statistics
                all_audio_chunks.append(audio_16bit)
                
                # Add to pending chunks buffer
                pending_chunks.append(audio_16bit)
                
                # Calculate pending audio size
                pending_audio_size = sum(len(chunk) for chunk in pending_chunks)
                current_time = time.time()
                time_since_last_yield = current_time - last_yield_time
                
                # Decide whether to yield
                should_yield = False
                if not has_yielded_audio and pending_audio_size >= min_chunk_size:
                    # First yield: wait for minimum chunk size
                    should_yield = True
                    has_yielded_audio = True
                elif has_yielded_audio and (pending_audio_size >= min_chunk_size or time_since_last_yield >= min_yield_interval):
                    # Subsequent yields: either enough audio or enough time has passed
                    should_yield = True
                
                if should_yield and pending_chunks:
                    # Concatenate and yield only the new audio chunks
                    new_audio = np.concatenate(pending_chunks)
                    new_duration = len(new_audio) / sample_rate
                    total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
                    
                    log_update = log + f"🎡 Streaming: {total_duration:.1f}s generated (chunk {chunk_count})\n"
                    
                    # Yield streaming audio chunk and keep complete_audio as None during streaming
                    yield (sample_rate, new_audio), None, log_update, gr.update(visible=True)
                    
                    # Clear pending chunks after yielding
                    pending_chunks = []
                    last_yield_time = current_time
            
            # Yield any remaining chunks
            if pending_chunks:
                final_new_audio = np.concatenate(pending_chunks)
                total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
                log_update = log + f"🎡 Streaming final chunk: {total_duration:.1f}s total\n"
                yield (sample_rate, final_new_audio), None, log_update, gr.update(visible=True)
                has_yielded_audio = True  # Mark that we yielded audio
            
            # Wait for generation to complete (with timeout to prevent hanging)
            generation_thread.join(timeout=5.0)  # Increased timeout to 5 seconds

            # If thread is still alive after timeout, force end
            if generation_thread.is_alive():
                print("Warning: Generation thread did not complete within timeout")
                audio_streamer.end()
                generation_thread.join(timeout=5.0)

            # Clean up
            self.current_streamer = None
            self.is_generating = False
            
            generation_time = time.time() - start_time
            
            # Check if stopped by user
            if self.stop_generation:
                yield None, None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return
            
            # Debug logging
            # print(f"Debug: has_received_chunks={has_received_chunks}, chunk_count={chunk_count}, all_audio_chunks length={len(all_audio_chunks)}")
            
            # Check if we received any chunks but didn't yield audio
            if has_received_chunks and not has_yielded_audio and all_audio_chunks:
                # We have chunks but didn't meet the yield criteria, yield them now
                complete_audio = np.concatenate(all_audio_chunks)
                final_duration = len(complete_audio) / sample_rate
                
                final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
                final_log += f"🎡 Final audio duration: {final_duration:.2f} seconds\n"
                final_log += f"πŸ“Š Total chunks: {chunk_count}\n"
                final_log += "✨ Generation successful! Complete audio is ready.\n"
                final_log += "πŸ’‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
                
                # Yield the complete audio
                yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
                return
            
            if not has_received_chunks:
                error_log = log + f"\n❌ Error: No audio chunks were received from the model. Generation time: {generation_time:.2f}s"
                yield None, None, error_log, gr.update(visible=False)
                return
            
            if not has_yielded_audio:
                error_log = log + f"\n❌ Error: Audio was generated but not streamed. Chunk count: {chunk_count}"
                yield None, None, error_log, gr.update(visible=False)
                return

            # Prepare the complete audio
            if all_audio_chunks:
                complete_audio = np.concatenate(all_audio_chunks)
                final_duration = len(complete_audio) / sample_rate
                
                final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
                final_log += f"🎡 Final audio duration: {final_duration:.2f} seconds\n"
                final_log += f"πŸ“Š Total chunks: {chunk_count}\n"
                final_log += "✨ Generation successful! Complete audio is ready in the 'Complete Audio' tab.\n"
                final_log += "πŸ’‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
                
                # Final yield: Clear streaming audio and provide complete audio
                yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
            else:
                final_log = log + "❌ No audio was generated."
                yield None, None, final_log, gr.update(visible=False)

        except gr.Error as e:
            # Handle Gradio-specific errors (like input validation)
            self.is_generating = False
            self.current_streamer = None
            error_msg = f"❌ Input Error: {str(e)}"
            print(error_msg)
            yield None, None, error_msg, gr.update(visible=False)
            
        except Exception as e:
            self.is_generating = False
            self.current_streamer = None
            error_msg = f"❌ An unexpected error occurred: {str(e)}"
            print(error_msg)
            import traceback
            traceback.print_exc()
            yield None, None, error_msg, gr.update(visible=False)
    
    def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer, voice_cloning_enabled: bool):
        """Helper method to run generation with streamer in a separate thread."""
        try:
            # Check for stop signal before starting generation
            if self.stop_generation:
                audio_streamer.end()
                return
                
            # Define a stop check function that can be called from generate
            def check_stop_generation():
                return self.stop_generation
                
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=None,
                cfg_scale=cfg_scale,
                tokenizer=self.processor.tokenizer,
                generation_config={
                    'do_sample': False,
                },
                audio_streamer=audio_streamer,
                stop_check_fn=check_stop_generation,  # Pass the stop check function
                verbose=False,  # Disable verbose in streaming mode
                refresh_negative=True,
                is_prefill=voice_cloning_enabled,
            )

        except Exception as e:
            print(f"Error in generation thread: {e}")
            traceback.print_exc()
            # Make sure to end the stream on error
            audio_streamer.end()

    def stop_audio_generation(self):
        """Stop the current audio generation process."""
        self.stop_generation = True
        if self.current_streamer is not None:
            try:
                self.current_streamer.end()
            except Exception as e:
                print(f"Error stopping streamer: {e}")
        print("πŸ›‘ Audio generation stop requested")

    def load_example_scripts(self):
        """Load example scripts from the text_examples directory."""
        self.example_scripts = []
        
        # Check if text_examples directory exists
        if not os.path.exists(self.examples_dir):
            print(f"Warning: text_examples directory not found at {self.examples_dir}")
            return
        
        # Get all .txt files in the text_examples directory
        txt_files = sorted([f for f in os.listdir(self.examples_dir) 
                          if f.lower().endswith('.txt') and os.path.isfile(os.path.join(self.examples_dir, f))])
        
        for txt_file in txt_files:
            file_path = os.path.join(self.examples_dir, txt_file)
            
            import re
            # Check if filename contains a time pattern like "45min", "90min", etc.
            time_pattern = re.search(r'(\d+)min', txt_file.lower())
            if time_pattern:
                minutes = int(time_pattern.group(1))
                if minutes > 15:
                    print(f"Skipping {txt_file}: duration {minutes} minutes exceeds 15-minute limit")
                    continue

            try:
                with open(file_path, 'r', encoding='utf-8') as f:
                    script_content = f.read().strip()
                
                # Remove empty lines and lines with only whitespace
                script_content = '\n'.join(line for line in script_content.split('\n') if line.strip())
                
                if not script_content:
                    continue
                
                # Parse the script to determine number of speakers
                num_speakers = self._get_num_speakers_from_script(script_content)
                
                # Add to examples list as [num_speakers, script_content]
                self.example_scripts.append([num_speakers, script_content])
                print(f"Loaded example: {txt_file} with {num_speakers} speakers")
                
            except Exception as e:
                print(f"Error loading example script {txt_file}: {e}")
        
        if self.example_scripts:
            print(f"Successfully loaded {len(self.example_scripts)} example scripts")
        else:
            print("No example scripts were loaded")
    
    def _get_num_speakers_from_script(self, script: str) -> int:
        """Determine the number of unique speakers in a script."""
        import re
        speakers = set()
        
        lines = script.strip().split('\n')
        for line in lines:
            # Use regex to find speaker patterns
            match = re.match(r'^Speaker\s+(\d+)\s*:', line.strip(), re.IGNORECASE)
            if match:
                speaker_id = int(match.group(1))
                speakers.add(speaker_id)
        
        # If no speakers found, default to 1
        if not speakers:
            return 1
        
        # Return the maximum speaker ID + 1 (assuming 0-based indexing)
        # or the count of unique speakers if they're 1-based
        max_speaker = max(speakers)
        min_speaker = min(speakers)
        
        if min_speaker == 0:
            return max_speaker + 1
        else:
            # Assume 1-based indexing, return the count
            return len(speakers)