Spaces:
Runtime error
Runtime error
Poe Dator
commited on
Commit
·
2ffe758
1
Parent(s):
ec34e2f
formatting, timing added
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import streamlit as st
|
|
| 2 |
import torch
|
| 3 |
from torch import nn
|
| 4 |
from transformers import BertModel, AutoTokenizer, AutoModel, pipeline
|
|
|
|
| 5 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 6 |
device = 'cpu'
|
| 7 |
|
|
@@ -9,6 +10,7 @@ st.markdown("### Privet, mir!")
|
|
| 9 |
st.markdown("<img width=200px src='https://i.pinimg.com/736x/11/33/19/113319f0ffe91f4bb0f468914b9916da.jpg'>", unsafe_allow_html=True)
|
| 10 |
|
| 11 |
text = st.text_area("ENTER TEXT HERE")
|
|
|
|
| 12 |
st.markdown("INFERENCE STARTS ...")
|
| 13 |
|
| 14 |
# dict for decoding / enclding labels
|
|
@@ -34,20 +36,21 @@ class BertClassifier(nn.Module):
|
|
| 34 |
linear_output = self.linear(dropout_output)
|
| 35 |
final_layer = self.relu(linear_output)
|
| 36 |
return final_layer
|
| 37 |
-
|
| 38 |
-
model = BertClassifier(n_classes=len(labels))
|
| 39 |
-
st.markdown("Model created")
|
| 40 |
-
model.load_state_dict(torch.load('model_weights_1.pt', map_location=torch.device('cpu')))
|
| 41 |
-
model.eval()
|
| 42 |
-
st.markdown("Model weights loaded")
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def inference(txt, mode=None):
|
| 45 |
# infers classes for text topic based on the trained model from above
|
| 46 |
# has separate mode 'print' for just output
|
| 47 |
-
|
| 48 |
-
txt = txt.lower().replace('\n', '')
|
| 49 |
-
|
| 50 |
-
t2 = tokenizer(txt,
|
| 51 |
padding='max_length', max_length = 512, truncation=True,
|
| 52 |
return_tensors="pt")
|
| 53 |
|
|
@@ -58,19 +61,12 @@ def inference(txt, mode=None):
|
|
| 58 |
out = out.cpu().detach().numpy().reshape(-1)
|
| 59 |
out = out/out.sum() * 100
|
| 60 |
res = [(l, o) for l, o in zip (list(labels.keys()), out.tolist())]
|
| 61 |
-
|
| 62 |
-
if mode == 'print':
|
| 63 |
-
res.sort(key = lambda x : - x[1])
|
| 64 |
-
for lbl, score in res:
|
| 65 |
-
if score >=1:
|
| 66 |
-
print(f"[{lbl:<7}] {labels_decoder[lbl]:<35} {score:.1f}%")
|
| 67 |
-
|
| 68 |
-
elif mode == 'debug':
|
| 69 |
-
return out, res
|
| 70 |
-
|
| 71 |
-
else:
|
| 72 |
-
return res
|
| 73 |
|
| 74 |
res = inference(text, mode=None)
|
| 75 |
st.markdown("INFERENCE RESULT:")
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
from torch import nn
|
| 4 |
from transformers import BertModel, AutoTokenizer, AutoModel, pipeline
|
| 5 |
+
from time import time
|
| 6 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
device = 'cpu'
|
| 8 |
|
|
|
|
| 10 |
st.markdown("<img width=200px src='https://i.pinimg.com/736x/11/33/19/113319f0ffe91f4bb0f468914b9916da.jpg'>", unsafe_allow_html=True)
|
| 11 |
|
| 12 |
text = st.text_area("ENTER TEXT HERE")
|
| 13 |
+
start_time = time()
|
| 14 |
st.markdown("INFERENCE STARTS ...")
|
| 15 |
|
| 16 |
# dict for decoding / enclding labels
|
|
|
|
| 36 |
linear_output = self.linear(dropout_output)
|
| 37 |
final_layer = self.relu(linear_output)
|
| 38 |
return final_layer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
def build_model():
|
| 41 |
+
model = BertClassifier(n_classes=len(labels))
|
| 42 |
+
st.markdown("Model created")
|
| 43 |
+
model.load_state_dict(torch.load('model_weights_1.pt', map_location=torch.device('cpu')))
|
| 44 |
+
model.eval()
|
| 45 |
+
st.markdown("Model weights loaded")
|
| 46 |
+
return model
|
| 47 |
+
|
| 48 |
+
model = build_model()
|
| 49 |
+
|
| 50 |
def inference(txt, mode=None):
|
| 51 |
# infers classes for text topic based on the trained model from above
|
| 52 |
# has separate mode 'print' for just output
|
| 53 |
+
t2 = tokenizer(txt.lower().replace('\n', ''),
|
|
|
|
|
|
|
|
|
|
| 54 |
padding='max_length', max_length = 512, truncation=True,
|
| 55 |
return_tensors="pt")
|
| 56 |
|
|
|
|
| 61 |
out = out.cpu().detach().numpy().reshape(-1)
|
| 62 |
out = out/out.sum() * 100
|
| 63 |
res = [(l, o) for l, o in zip (list(labels.keys()), out.tolist())]
|
| 64 |
+
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
res = inference(text, mode=None)
|
| 67 |
st.markdown("INFERENCE RESULT:")
|
| 68 |
+
for lbl, score in res:
|
| 69 |
+
if score >=1:
|
| 70 |
+
st.markdown(f"[{lbl:<7}] {labels_decoder[lbl]:<35} {score:.1f}%")
|
| 71 |
+
|
| 72 |
+
st.markdown(f"cycle time = {time() - start_time:.2f} s.")
|