Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -74,7 +74,7 @@ model_y = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 74 |
torch_dtype=torch.float16
|
| 75 |
).to(device).eval()
|
| 76 |
|
| 77 |
-
#
|
| 78 |
def downsample_video(video_path):
|
| 79 |
"""
|
| 80 |
Downsamples the video to evenly spaced frames.
|
|
@@ -105,6 +105,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 105 |
repetition_penalty: float = 1.2):
|
| 106 |
"""
|
| 107 |
Generates responses using the selected model for image input.
|
|
|
|
| 108 |
"""
|
| 109 |
if model_name == "SkyCaptioner-V1":
|
| 110 |
processor = processor_m
|
|
@@ -122,11 +123,11 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 122 |
processor = processor_y
|
| 123 |
model = model_y
|
| 124 |
else:
|
| 125 |
-
yield "Invalid model selected."
|
| 126 |
return
|
| 127 |
|
| 128 |
if image is None:
|
| 129 |
-
yield "Please upload an image."
|
| 130 |
return
|
| 131 |
|
| 132 |
messages = [{
|
|
@@ -154,7 +155,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 154 |
buffer += new_text
|
| 155 |
buffer = buffer.replace("<|im_end|>", "")
|
| 156 |
time.sleep(0.01)
|
| 157 |
-
yield buffer
|
| 158 |
|
| 159 |
@spaces.GPU
|
| 160 |
def generate_video(model_name: str, text: str, video_path: str,
|
|
@@ -165,6 +166,7 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 165 |
repetition_penalty: float = 1.2):
|
| 166 |
"""
|
| 167 |
Generates responses using the selected model for video input.
|
|
|
|
| 168 |
"""
|
| 169 |
if model_name == "SkyCaptioner-V1":
|
| 170 |
processor = processor_m
|
|
@@ -182,11 +184,11 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 182 |
processor = processor_y
|
| 183 |
model = model_y
|
| 184 |
else:
|
| 185 |
-
yield "Invalid model selected."
|
| 186 |
return
|
| 187 |
|
| 188 |
if video_path is None:
|
| 189 |
-
yield "Please upload a video."
|
| 190 |
return
|
| 191 |
|
| 192 |
frames = downsample_video(video_path)
|
|
@@ -225,7 +227,7 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 225 |
buffer += new_text
|
| 226 |
buffer = buffer.replace("<|im_end|>", "")
|
| 227 |
time.sleep(0.01)
|
| 228 |
-
yield buffer
|
| 229 |
|
| 230 |
# Define examples for image and video inference
|
| 231 |
image_examples = [
|
|
@@ -249,6 +251,11 @@ css = """
|
|
| 249 |
.submit-btn:hover {
|
| 250 |
background-color: #3498db !important;
|
| 251 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
"""
|
| 253 |
|
| 254 |
# Create the Gradio Interface
|
|
@@ -280,28 +287,33 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 280 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 281 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 282 |
with gr.Column():
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
model_choice = gr.Radio(
|
| 285 |
choices=["SkyCaptioner-V1", "Behemoth-3B-070225-post0.1", "SpaceThinker-3B", "coreOCR-7B-050325-preview", "SpaceOm-3B"],
|
| 286 |
label="Select Model",
|
| 287 |
value="SkyCaptioner-V1"
|
| 288 |
)
|
| 289 |
-
|
| 290 |
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/VisionScope-R2/discussions)")
|
| 291 |
-
gr.Markdown("> [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1):
|
| 292 |
gr.Markdown("> [SpaceThinker-Qwen2.5VL-3B](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B): thinking/reasoning multimodal/vision-language model (VLM) trained to enhance spatial reasoning.")
|
| 293 |
-
gr.Markdown("> [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): model is a fine-tuned version of qwen/qwen2-vl-7b, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
|
| 294 |
-
gr.Markdown("> [SpaceOm](https://huggingface.co/remyxai/SpaceOm): SpaceOm, the reasoning traces in the spacethinker dataset average ~200 thinking tokens, so now included longer reasoning traces in the training data to help the model use more tokens in reasoning.")
|
| 295 |
-
|
|
|
|
|
|
|
| 296 |
image_submit.click(
|
| 297 |
fn=generate_image,
|
| 298 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 299 |
-
outputs=output
|
| 300 |
)
|
| 301 |
video_submit.click(
|
| 302 |
fn=generate_video,
|
| 303 |
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 304 |
-
outputs=output
|
| 305 |
)
|
| 306 |
|
| 307 |
if __name__ == "__main__":
|
|
|
|
| 74 |
torch_dtype=torch.float16
|
| 75 |
).to(device).eval()
|
| 76 |
|
| 77 |
+
# Video sampling
|
| 78 |
def downsample_video(video_path):
|
| 79 |
"""
|
| 80 |
Downsamples the video to evenly spaced frames.
|
|
|
|
| 105 |
repetition_penalty: float = 1.2):
|
| 106 |
"""
|
| 107 |
Generates responses using the selected model for image input.
|
| 108 |
+
Yields raw text and Markdown-formatted text.
|
| 109 |
"""
|
| 110 |
if model_name == "SkyCaptioner-V1":
|
| 111 |
processor = processor_m
|
|
|
|
| 123 |
processor = processor_y
|
| 124 |
model = model_y
|
| 125 |
else:
|
| 126 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 127 |
return
|
| 128 |
|
| 129 |
if image is None:
|
| 130 |
+
yield "Please upload an image.", "Please upload an image."
|
| 131 |
return
|
| 132 |
|
| 133 |
messages = [{
|
|
|
|
| 155 |
buffer += new_text
|
| 156 |
buffer = buffer.replace("<|im_end|>", "")
|
| 157 |
time.sleep(0.01)
|
| 158 |
+
yield buffer, buffer
|
| 159 |
|
| 160 |
@spaces.GPU
|
| 161 |
def generate_video(model_name: str, text: str, video_path: str,
|
|
|
|
| 166 |
repetition_penalty: float = 1.2):
|
| 167 |
"""
|
| 168 |
Generates responses using the selected model for video input.
|
| 169 |
+
Yields raw text and Markdown-formatted text.
|
| 170 |
"""
|
| 171 |
if model_name == "SkyCaptioner-V1":
|
| 172 |
processor = processor_m
|
|
|
|
| 184 |
processor = processor_y
|
| 185 |
model = model_y
|
| 186 |
else:
|
| 187 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 188 |
return
|
| 189 |
|
| 190 |
if video_path is None:
|
| 191 |
+
yield "Please upload a video.", "Please upload a video."
|
| 192 |
return
|
| 193 |
|
| 194 |
frames = downsample_video(video_path)
|
|
|
|
| 227 |
buffer += new_text
|
| 228 |
buffer = buffer.replace("<|im_end|>", "")
|
| 229 |
time.sleep(0.01)
|
| 230 |
+
yield buffer, buffer
|
| 231 |
|
| 232 |
# Define examples for image and video inference
|
| 233 |
image_examples = [
|
|
|
|
| 251 |
.submit-btn:hover {
|
| 252 |
background-color: #3498db !important;
|
| 253 |
}
|
| 254 |
+
.canvas-output {
|
| 255 |
+
border: 2px solid #4682B4;
|
| 256 |
+
border-radius: 10px;
|
| 257 |
+
padding: 20px;
|
| 258 |
+
}
|
| 259 |
"""
|
| 260 |
|
| 261 |
# Create the Gradio Interface
|
|
|
|
| 287 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 288 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 289 |
with gr.Column():
|
| 290 |
+
with gr.Column(elem_classes="canvas-output"):
|
| 291 |
+
gr.Markdown("## Result.Md")
|
| 292 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2, scale=2)
|
| 293 |
+
with gr.Accordion("Formatted Result (Result.md)", open=False):
|
| 294 |
+
markdown_output = gr.Markdown(label="Formatted Result")
|
| 295 |
model_choice = gr.Radio(
|
| 296 |
choices=["SkyCaptioner-V1", "Behemoth-3B-070225-post0.1", "SpaceThinker-3B", "coreOCR-7B-050325-preview", "SpaceOm-3B"],
|
| 297 |
label="Select Model",
|
| 298 |
value="SkyCaptioner-V1"
|
| 299 |
)
|
|
|
|
| 300 |
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/VisionScope-R2/discussions)")
|
| 301 |
+
gr.Markdown("> [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1): structural video captioning model designed to generate high-quality, structural descriptions for video data. It integrates specialized sub-expert models.")
|
| 302 |
gr.Markdown("> [SpaceThinker-Qwen2.5VL-3B](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B): thinking/reasoning multimodal/vision-language model (VLM) trained to enhance spatial reasoning.")
|
| 303 |
+
gr.Markdown("> [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): model is a fine-tuned version of qwen/qwen2-vl-7b, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
|
| 304 |
+
gr.Markdown("> [SpaceOm](https://huggingface.co/remyxai/SpaceOm): SpaceOm, the reasoning traces in the spacethinker dataset average ~200 thinking tokens, so now included longer reasoning traces in the training data to help the model use more tokens in reasoning.")
|
| 305 |
+
gr.Markdown("> [Behemoth-3B-070225-post0.1](https://huggingface.co/prithivMLmods/Behemoth-3B-070225-post0.1): The behemoth-3b-070225-post0.1 model is a fine-tuned version of qwen2.5-vl-3b-instruct, optimized for detailed image captioning, OCR tasks, and chain-of-thought reasoning.")
|
| 306 |
+
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
| 307 |
+
|
| 308 |
image_submit.click(
|
| 309 |
fn=generate_image,
|
| 310 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 311 |
+
outputs=[output, markdown_output]
|
| 312 |
)
|
| 313 |
video_submit.click(
|
| 314 |
fn=generate_video,
|
| 315 |
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 316 |
+
outputs=[output, markdown_output]
|
| 317 |
)
|
| 318 |
|
| 319 |
if __name__ == "__main__":
|