Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| import os | |
| import sys | |
| import subprocess | |
| import tempfile | |
| import numpy as np | |
| import spaces | |
| from PIL import Image | |
| # Define paths | |
| REPO_PATH = "LongCat-Video" | |
| CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video") | |
| # Clone repo if missing | |
| if not os.path.exists(REPO_PATH): | |
| print(f"Cloning LongCat-Video repository to '{REPO_PATH}'...") | |
| subprocess.run( | |
| ["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH], | |
| check=True | |
| ) | |
| sys.path.insert(0, os.path.abspath(REPO_PATH)) | |
| # Imports from LongCat repo | |
| from huggingface_hub import snapshot_download | |
| from longcat_video.pipeline_longcat_video import LongCatVideoPipeline | |
| from longcat_video.modules.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler | |
| from longcat_video.modules.autoencoder_kl_wan import AutoencoderKLWan | |
| from longcat_video.modules.longcat_video_dit import LongCatVideoTransformer3DModel | |
| from longcat_video.context_parallel import context_parallel_util | |
| from transformers import AutoTokenizer, UMT5EncoderModel | |
| from diffusers.utils import export_to_video | |
| from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig | |
| # Download model weights if missing | |
| if not os.path.exists(CHECKPOINT_DIR): | |
| snapshot_download( | |
| repo_id="meituan-longcat/LongCat-Video", | |
| local_dir=CHECKPOINT_DIR, | |
| local_dir_use_symlinks=False, | |
| ignore_patterns=["*.md", "*.gitattributes", "assets/*"] | |
| ) | |
| pipe = None | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32 | |
| print("--- Initializing Models ---") | |
| try: | |
| cp_split_hw = context_parallel_util.get_optimal_split(1) | |
| tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_DIR, subfolder="tokenizer", torch_dtype=torch_dtype) | |
| text_encoder = UMT5EncoderModel.from_pretrained(CHECKPOINT_DIR, subfolder="text_encoder", torch_dtype=torch_dtype) | |
| vae = AutoencoderKLWan.from_pretrained(CHECKPOINT_DIR, subfolder="vae", torch_dtype=torch_dtype) | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(CHECKPOINT_DIR, subfolder="scheduler", torch_dtype=torch_dtype) | |
| # ✅ 4-bit quantization enabled | |
| bnb_4bit_config = DiffusersBitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) | |
| dit = LongCatVideoTransformer3DModel.from_pretrained( | |
| CHECKPOINT_DIR, | |
| enable_flashattn3=False, | |
| enable_flashattn2=False, | |
| enable_xformers=True, | |
| subfolder="dit", | |
| cp_split_hw=cp_split_hw, | |
| torch_dtype=torch_dtype, | |
| #quantization_config=bnb_4bit_config # ✅ added | |
| ) | |
| pipe = LongCatVideoPipeline( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| scheduler=scheduler, | |
| dit=dit, | |
| ).to(device) | |
| pipe.dit.load_lora(os.path.join(CHECKPOINT_DIR, 'lora/cfg_step_lora.safetensors'), 'cfg_step_lora') | |
| pipe.dit.load_lora(os.path.join(CHECKPOINT_DIR, 'lora/refinement_lora.safetensors'), 'refinement_lora') | |
| print("--- Models loaded successfully ---") | |
| except Exception as e: | |
| print("❌ Model load error:", e) | |
| pipe = None | |
| # -------------------- GPU Cleanup -------------------- | |
| def torch_gc(): | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| # -------------------- Video Generation -------------------- | |
| def check_duration(*_args, duration_t2v=2, **_kwargs): | |
| fps = 30 | |
| return duration_t2v * fps +30 | |
| def generate_video( | |
| mode, | |
| prompt, | |
| neg_prompt, | |
| image, | |
| height, width, resolution, | |
| seed, | |
| use_distill, | |
| use_refine, | |
| duration_t2v=2, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| if pipe is None: | |
| raise gr.Error("Models failed to load.") | |
| generator = torch.Generator(device=device).manual_seed(int(seed)) | |
| num_frames = int(duration_t2v * 30) # ✅ duration-based frame count | |
| print(prompt) | |
| is_distill = use_distill or use_refine | |
| if is_distill: | |
| pipe.dit.enable_loras(['cfg_step_lora']) | |
| num_inference_steps = 16 | |
| guidance_scale = 1.0 | |
| neg = "" | |
| else: | |
| num_inference_steps = 50 | |
| guidance_scale = 4.0 | |
| neg = neg_prompt | |
| if mode == "t2v": | |
| output = pipe.generate_t2v( | |
| prompt=prompt, | |
| negative_prompt=neg, | |
| height=height, | |
| width=width, | |
| num_frames=num_frames, | |
| num_inference_steps=num_inference_steps, | |
| use_distill=is_distill, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| )[0] | |
| else: | |
| pil_image = Image.fromarray(image) | |
| output = pipe.generate_i2v( | |
| image=pil_image, | |
| prompt=prompt, | |
| negative_prompt=neg, | |
| resolution=resolution, | |
| num_frames=num_frames, | |
| num_inference_steps=num_inference_steps, | |
| use_distill=is_distill, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| )[0] | |
| if is_distill: | |
| pipe.dit.disable_all_loras() | |
| torch_gc() | |
| if use_refine: | |
| progress(0.5, desc="Refining") | |
| pipe.dit.enable_loras(['refinement_lora']) | |
| pipe.dit.enable_bsa() | |
| frames = [(frame * 255).astype(np.uint8) for frame in output] | |
| frames = [Image.fromarray(f) for f in frames] | |
| ref_img = Image.fromarray(image) if mode == "i2v" else None | |
| output = pipe.generate_refine( | |
| image=ref_img, | |
| prompt=prompt, | |
| stage1_video=frames, | |
| num_cond_frames=1 if mode == "i2v" else 0, | |
| num_inference_steps=50, | |
| generator=generator, | |
| )[0] | |
| pipe.dit.disable_all_loras() | |
| pipe.dit.disable_bsa() | |
| torch_gc() | |
| with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp: | |
| export_to_video(output, tmp.name, fps=30) | |
| print("video generatwd") | |
| return tmp.name | |
| # -------------------- Gradio UI -------------------- | |
| css = ".fillable{max-width:960px !important}" | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("# 🎬 LongCat-Video") | |
| gr.Markdown("13.6B parameter dense video-generation model — [HuggingFace](https://huggingface.co/meituan-longcat/LongCat-Video)") | |
| with gr.Tabs(): | |
| # --- T2V --- | |
| with gr.TabItem("Text-to-Video"): | |
| mode_t2v = gr.State("t2v") | |
| prompt_t2v = gr.Textbox(label="Prompt", lines=4) | |
| neg_t2v = gr.Textbox(label="Negative Prompt", lines=2, value="ugly, blurry, low quality, static, subtitles") | |
| height_t2v = gr.Slider(256, 1024, value=480, step=64, label="Height") | |
| width_t2v = gr.Slider(256, 1024, value=832, step=64, label="Width") | |
| seed_t2v = gr.Number(label="Seed", value=42) | |
| distill_t2v = gr.Checkbox(label="Use Distill Mode", value=True) | |
| refine_t2v = gr.Checkbox(label="Use Refine Mode", value=False) | |
| duration_t2v = gr.Slider(1, 20, step=1, value=2, label="Duration (seconds)") # ✅ added | |
| t2v_button = gr.Button("Generate Video") | |
| video_out_t2v = gr.Video(label="Generated Video") | |
| t2v_button.click( | |
| fn=generate_video, | |
| inputs=[mode_t2v, prompt_t2v, neg_t2v, gr.State(None), | |
| height_t2v, width_t2v, gr.State(None), | |
| seed_t2v, distill_t2v, refine_t2v, duration_t2v], | |
| outputs=video_out_t2v | |
| ) | |
| # --- I2V --- | |
| with gr.TabItem("Image-to-Video"): | |
| mode_i2v = gr.State("i2v") | |
| image_i2v = gr.Image(type="numpy", label="Input Image") | |
| prompt_i2v = gr.Textbox(label="Prompt", lines=4) | |
| neg_i2v = gr.Textbox(label="Negative Prompt", lines=2, value="ugly, blurry, low quality, static, subtitles, watermark") | |
| resolution_i2v = gr.Dropdown(["480p", "720p"], value="480p", label="Resolution") | |
| seed_i2v = gr.Number(label="Seed", value=42) | |
| distill_i2v = gr.Checkbox(label="Use Distill Mode", value=True) | |
| refine_i2v = gr.Checkbox(label="Use Refine Mode", value=False) | |
| duration_i2v = gr.Slider(1, 20, step=1, value=2, label="Duration (seconds)") # ✅ added | |
| i2v_button = gr.Button("Generate Video") | |
| video_out_i2v = gr.Video(label="Generated Video") | |
| i2v_button.click( | |
| fn=generate_video, | |
| inputs=[mode_i2v, prompt_i2v, neg_i2v, image_i2v, | |
| gr.State(None), gr.State(None), resolution_i2v, | |
| seed_i2v, distill_i2v, refine_i2v, duration_i2v], | |
| outputs=video_out_i2v | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |