Spaces:
Running
on
Zero
Running
on
Zero
Update app_exp.py
Browse files- app_exp.py +105 -214
app_exp.py
CHANGED
|
@@ -1,55 +1,22 @@
|
|
| 1 |
import spaces
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import torch
|
| 4 |
import os
|
| 5 |
import sys
|
| 6 |
-
import subprocess
|
| 7 |
import tempfile
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
-
import site
|
| 10 |
-
import importlib
|
| 11 |
from PIL import Image
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# ============================================================
|
| 17 |
-
subprocess.run(["pip3", "install", "-U", "cache-dit"], check=True)
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
import cache_dit
|
| 22 |
-
|
| 23 |
-
enable_fa3 = False # default if FA3 cannot be loaded
|
| 24 |
-
|
| 25 |
-
try:
|
| 26 |
-
print("Installing FlashAttention 3...")
|
| 27 |
-
flash_attention_wheel = hf_hub_download(
|
| 28 |
-
repo_id="rahul7star/flash-attn-3",
|
| 29 |
-
repo_type="model",
|
| 30 |
-
filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
|
| 31 |
-
)
|
| 32 |
-
subprocess.run(["pip", "install", flash_attention_wheel], check=True)
|
| 33 |
-
site.addsitedir(site.getsitepackages()[0])
|
| 34 |
-
importlib.invalidate_caches()
|
| 35 |
-
enable_fa3 = True
|
| 36 |
-
print("✅ FlashAttention 3 installed and enabled")
|
| 37 |
-
except Exception as e:
|
| 38 |
-
print(f"⚠️ Could not install FlashAttention 3: {e}")
|
| 39 |
-
# enable_fa3 remains False
|
| 40 |
-
|
| 41 |
|
| 42 |
# ============================================================
|
| 43 |
-
# 1️⃣
|
| 44 |
# ============================================================
|
| 45 |
REPO_PATH = "LongCat-Video"
|
| 46 |
CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video")
|
| 47 |
-
|
| 48 |
if not os.path.exists(REPO_PATH):
|
| 49 |
-
subprocess.run(
|
| 50 |
-
["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH],
|
| 51 |
-
check=True
|
| 52 |
-
)
|
| 53 |
|
| 54 |
sys.path.insert(0, os.path.abspath(REPO_PATH))
|
| 55 |
|
|
@@ -57,248 +24,172 @@ from longcat_video.pipeline_longcat_video import LongCatVideoPipeline
|
|
| 57 |
from longcat_video.modules.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 58 |
from longcat_video.modules.autoencoder_kl_wan import AutoencoderKLWan
|
| 59 |
from longcat_video.modules.longcat_video_dit import LongCatVideoTransformer3DModel
|
|
|
|
| 60 |
from longcat_video.context_parallel import context_parallel_util
|
|
|
|
| 61 |
from transformers import AutoTokenizer, UMT5EncoderModel
|
| 62 |
-
from diffusers.utils import export_to_video
|
| 63 |
-
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 64 |
-
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 65 |
|
| 66 |
-
if
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
|
| 74 |
# ============================================================
|
| 75 |
-
# 2️⃣
|
| 76 |
# ============================================================
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
pipe = None
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
subfolder="text_encoder",
|
| 89 |
-
torch_dtype=torch_dtype,
|
| 90 |
-
quantization_config=TransformersBitsAndBytesConfig(
|
| 91 |
load_in_4bit=True,
|
| 92 |
bnb_4bit_quant_type="nf4",
|
| 93 |
bnb_4bit_compute_dtype=torch_dtype
|
| 94 |
)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
vae = AutoencoderKLWan.from_pretrained(CHECKPOINT_DIR, subfolder="vae", torch_dtype=torch_dtype)
|
| 98 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(CHECKPOINT_DIR, subfolder="scheduler", torch_dtype=torch_dtype)
|
| 99 |
|
| 100 |
-
# DiT model with FP8/4-bit quantization + cache
|
| 101 |
dit = LongCatVideoTransformer3DModel.from_pretrained(
|
| 102 |
-
|
| 103 |
-
enable_flashattn3=enable_fa3,
|
| 104 |
-
enable_xformers=True,
|
| 105 |
subfolder="dit",
|
| 106 |
cp_split_hw=cp_split_hw,
|
| 107 |
-
torch_dtype=torch_dtype
|
|
|
|
| 108 |
)
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
transformer=dit,
|
| 114 |
-
|
| 115 |
-
forward_pattern=cache_dit.ForwardPattern.Pattern_3,
|
| 116 |
-
check_forward_pattern=False,
|
| 117 |
-
has_separate_cfg=False
|
| 118 |
-
),
|
| 119 |
-
cache_config=cache_dit.DBCacheConfig(
|
| 120 |
-
Fn_compute_blocks=1,
|
| 121 |
-
Bn_compute_blocks=1,
|
| 122 |
-
max_warmup_steps=5,
|
| 123 |
-
max_cached_steps=50,
|
| 124 |
-
max_continuous_cached_steps=50,
|
| 125 |
-
residual_diff_threshold=0.01,
|
| 126 |
-
num_inference_steps=50
|
| 127 |
)
|
| 128 |
-
)
|
| 129 |
|
| 130 |
pipe = LongCatVideoPipeline(
|
| 131 |
tokenizer=tokenizer,
|
| 132 |
text_encoder=text_encoder,
|
| 133 |
vae=vae,
|
| 134 |
scheduler=scheduler,
|
| 135 |
-
dit=dit
|
| 136 |
)
|
| 137 |
pipe.to(device)
|
| 138 |
-
|
| 139 |
|
| 140 |
-
|
| 141 |
-
print(f"❌ Failed to load models: {e}")
|
| 142 |
-
pipe = None
|
| 143 |
|
| 144 |
# ============================================================
|
| 145 |
-
# 3️⃣
|
| 146 |
# ============================================================
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
torch.cuda.ipc_collect()
|
| 151 |
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
mode,
|
| 154 |
-
prompt,
|
| 155 |
-
neg_prompt,
|
| 156 |
image,
|
| 157 |
-
height,
|
|
|
|
|
|
|
| 158 |
seed,
|
| 159 |
-
use_distill,
|
| 160 |
use_refine,
|
| 161 |
-
progress
|
| 162 |
):
|
| 163 |
-
if use_distill and resolution=="480p":
|
| 164 |
-
return 180
|
| 165 |
-
elif resolution=="720p":
|
| 166 |
-
return 360
|
| 167 |
-
else:
|
| 168 |
-
return 900
|
| 169 |
-
|
| 170 |
-
@spaces.GPU(duration=180)
|
| 171 |
-
def generate_video(mode, prompt, neg_prompt, image, height, width, resolution,
|
| 172 |
-
seed, use_distill, use_refine, duration_sec, progress=gr.Progress(track_tqdm=True)):
|
| 173 |
-
|
| 174 |
-
if pipe is None:
|
| 175 |
-
raise gr.Error("Models not loaded")
|
| 176 |
-
|
| 177 |
-
fps = 15 if use_distill else 30
|
| 178 |
-
num_frames = int(duration_sec * fps)
|
| 179 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 180 |
-
is_distill = use_distill or use_refine
|
| 181 |
-
|
| 182 |
-
progress(0.2, desc="Stage 1: Base Video Generation")
|
| 183 |
-
pipe.dit.enable_loras(['cfg_step_lora'] if is_distill else [])
|
| 184 |
-
num_inference_steps = 12 if is_distill else 24
|
| 185 |
-
guidance_scale = 2.0 if is_distill else 4.0
|
| 186 |
-
curr_neg_prompt = "" if is_distill else neg_prompt
|
| 187 |
|
| 188 |
if mode=="t2v":
|
| 189 |
output = pipe.generate_t2v(
|
| 190 |
prompt=prompt,
|
| 191 |
-
negative_prompt=
|
| 192 |
height=height,
|
| 193 |
width=width,
|
| 194 |
num_frames=num_frames,
|
| 195 |
-
num_inference_steps=
|
| 196 |
-
|
| 197 |
-
guidance_scale=guidance_scale,
|
| 198 |
generator=generator
|
| 199 |
)[0]
|
| 200 |
else:
|
| 201 |
-
|
| 202 |
output = pipe.generate_i2v(
|
| 203 |
-
image=
|
| 204 |
prompt=prompt,
|
| 205 |
-
negative_prompt=
|
| 206 |
-
resolution=
|
| 207 |
num_frames=num_frames,
|
| 208 |
-
num_inference_steps=
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
|
|
|
| 212 |
)[0]
|
| 213 |
|
| 214 |
-
pipe.dit.disable_all_loras()
|
| 215 |
-
torch_gc()
|
| 216 |
-
|
| 217 |
if use_refine:
|
| 218 |
-
progress(0.5, desc="Stage 2: Refinement")
|
| 219 |
pipe.dit.enable_loras(['refinement_lora'])
|
| 220 |
pipe.dit.enable_bsa()
|
| 221 |
stage1_video_pil = [(frame*255).astype(np.uint8) for frame in output]
|
| 222 |
-
stage1_video_pil = [Image.fromarray(
|
| 223 |
-
|
| 224 |
output = pipe.generate_refine(
|
| 225 |
-
image=refine_image,
|
| 226 |
-
prompt=prompt,
|
| 227 |
stage1_video=stage1_video_pil,
|
| 228 |
-
|
|
|
|
| 229 |
num_inference_steps=50,
|
| 230 |
generator=generator
|
| 231 |
)[0]
|
| 232 |
-
pipe.dit.disable_all_loras()
|
| 233 |
-
pipe.dit.disable_bsa()
|
| 234 |
-
torch_gc()
|
| 235 |
|
| 236 |
-
|
|
|
|
|
|
|
| 237 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as f:
|
| 238 |
-
|
| 239 |
return f.name
|
| 240 |
|
| 241 |
# ============================================================
|
| 242 |
-
#
|
| 243 |
# ============================================================
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
with gr.
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
neg_prompt_i2v = gr.Textbox(label="Negative Prompt", lines=2, value="blurry, low quality")
|
| 276 |
-
resolution_i2v = gr.Dropdown(["480p","720p"], value="480p", label="Resolution")
|
| 277 |
-
seed_i2v = gr.Number(value=42,label="Seed")
|
| 278 |
-
distill_i2v = gr.Checkbox(value=True,label="Use Distill Mode")
|
| 279 |
-
refine_i2v = gr.Checkbox(value=False,label="Use Refine Mode")
|
| 280 |
-
duration_i2v = gr.Slider(1,20,step=1,value=2,label="Video Duration (seconds)")
|
| 281 |
-
i2v_button = gr.Button("Generate Video")
|
| 282 |
-
with gr.Column(scale=3):
|
| 283 |
-
video_output_i2v = gr.Video(label="Generated Video")
|
| 284 |
-
|
| 285 |
-
# Bind events
|
| 286 |
-
t2v_button.click(
|
| 287 |
-
generate_video,
|
| 288 |
-
inputs=[mode_t2v, prompt_t2v, neg_prompt_t2v, gr.State(None),
|
| 289 |
-
height_t2v, width_t2v, gr.State("480p"),
|
| 290 |
-
seed_t2v, distill_t2v, refine_t2v, duration_t2v],
|
| 291 |
-
outputs=video_output_t2v
|
| 292 |
-
)
|
| 293 |
-
|
| 294 |
-
i2v_button.click(
|
| 295 |
-
generate_video,
|
| 296 |
-
inputs=[mode_i2v, prompt_i2v, neg_prompt_i2v, image_i2v,
|
| 297 |
-
gr.State(None), gr.State(None), resolution_i2v,
|
| 298 |
-
seed_i2v, distill_i2v, refine_i2v, duration_i2v],
|
| 299 |
-
outputs=video_output_i2v
|
| 300 |
-
)
|
| 301 |
|
| 302 |
-
# Launch
|
| 303 |
if __name__=="__main__":
|
| 304 |
demo.launch()
|
|
|
|
| 1 |
import spaces
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import sys
|
|
|
|
| 4 |
import tempfile
|
| 5 |
+
import datetime
|
| 6 |
import numpy as np
|
|
|
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import torch
|
| 10 |
+
import torch.distributed as dist
|
| 11 |
+
from torchvision.io import write_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# ============================================================
|
| 14 |
+
# 1️⃣ Repo & checkpoint paths
|
| 15 |
# ============================================================
|
| 16 |
REPO_PATH = "LongCat-Video"
|
| 17 |
CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video")
|
|
|
|
| 18 |
if not os.path.exists(REPO_PATH):
|
| 19 |
+
subprocess.run(["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH], check=True)
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
sys.path.insert(0, os.path.abspath(REPO_PATH))
|
| 22 |
|
|
|
|
| 24 |
from longcat_video.modules.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 25 |
from longcat_video.modules.autoencoder_kl_wan import AutoencoderKLWan
|
| 26 |
from longcat_video.modules.longcat_video_dit import LongCatVideoTransformer3DModel
|
| 27 |
+
from longcat_video.context_parallel.context_parallel_util import init_context_parallel
|
| 28 |
from longcat_video.context_parallel import context_parallel_util
|
| 29 |
+
import cache_dit
|
| 30 |
from transformers import AutoTokenizer, UMT5EncoderModel
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
+
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
|
| 34 |
+
|
| 35 |
+
def torch_gc():
|
| 36 |
+
if torch.cuda.is_available():
|
| 37 |
+
torch.cuda.empty_cache()
|
| 38 |
+
torch.cuda.ipc_collect()
|
| 39 |
|
| 40 |
# ============================================================
|
| 41 |
+
# 2️⃣ Model loader with cache & 4-bit/FP8 quantization
|
| 42 |
# ============================================================
|
| 43 |
+
def load_models(checkpoint_dir=CHECKPOINT_DIR, cp_size=1, quantize=True, cache=True):
|
| 44 |
+
cp_split_hw = context_parallel_util.get_optimal_split(cp_size)
|
|
|
|
| 45 |
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir, subfolder="tokenizer", torch_dtype=torch_dtype)
|
| 47 |
+
text_encoder = UMT5EncoderModel.from_pretrained(checkpoint_dir, subfolder="text_encoder", torch_dtype=torch_dtype)
|
| 48 |
+
vae = AutoencoderKLWan.from_pretrained(checkpoint_dir, subfolder="vae", torch_dtype=torch_dtype)
|
| 49 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(checkpoint_dir, subfolder="scheduler", torch_dtype=torch_dtype)
|
| 50 |
|
| 51 |
+
if quantize:
|
| 52 |
+
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 53 |
+
quant_cfg = DiffusersBitsAndBytesConfig(
|
|
|
|
|
|
|
|
|
|
| 54 |
load_in_4bit=True,
|
| 55 |
bnb_4bit_quant_type="nf4",
|
| 56 |
bnb_4bit_compute_dtype=torch_dtype
|
| 57 |
)
|
| 58 |
+
else:
|
| 59 |
+
quant_cfg = None
|
|
|
|
|
|
|
| 60 |
|
|
|
|
| 61 |
dit = LongCatVideoTransformer3DModel.from_pretrained(
|
| 62 |
+
checkpoint_dir,
|
|
|
|
|
|
|
| 63 |
subfolder="dit",
|
| 64 |
cp_split_hw=cp_split_hw,
|
| 65 |
+
torch_dtype=torch_dtype,
|
| 66 |
+
quantization_config=quant_cfg
|
| 67 |
)
|
| 68 |
|
| 69 |
+
if cache:
|
| 70 |
+
from cache_dit import enable_cache, BlockAdapter, ForwardPattern, DBCacheConfig
|
| 71 |
+
enable_cache(
|
| 72 |
+
BlockAdapter(transformer=dit, blocks=dit.blocks, forward_pattern=ForwardPattern.Pattern_3),
|
| 73 |
+
cache_config=DBCacheConfig(Fn_compute_blocks=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
)
|
|
|
|
| 75 |
|
| 76 |
pipe = LongCatVideoPipeline(
|
| 77 |
tokenizer=tokenizer,
|
| 78 |
text_encoder=text_encoder,
|
| 79 |
vae=vae,
|
| 80 |
scheduler=scheduler,
|
| 81 |
+
dit=dit
|
| 82 |
)
|
| 83 |
pipe.to(device)
|
| 84 |
+
return pipe
|
| 85 |
|
| 86 |
+
pipe = load_models()
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# ============================================================
|
| 89 |
+
# 3️⃣ LoRA refinement
|
| 90 |
# ============================================================
|
| 91 |
+
pipe.dit.load_lora(os.path.join(CHECKPOINT_DIR, 'lora/refinement_lora.safetensors'), 'refinement_lora')
|
| 92 |
+
pipe.dit.enable_loras(['refinement_lora'])
|
| 93 |
+
pipe.dit.enable_bsa()
|
|
|
|
| 94 |
|
| 95 |
+
# ============================================================
|
| 96 |
+
# 4️⃣ Video generation function
|
| 97 |
+
# ============================================================
|
| 98 |
+
@spaces.GPU(duration=60)
|
| 99 |
+
def generate_video(
|
| 100 |
mode,
|
| 101 |
+
prompt,
|
| 102 |
+
neg_prompt,
|
| 103 |
image,
|
| 104 |
+
height,
|
| 105 |
+
width,
|
| 106 |
+
num_frames,
|
| 107 |
seed,
|
|
|
|
| 108 |
use_refine,
|
|
|
|
| 109 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
if mode=="t2v":
|
| 113 |
output = pipe.generate_t2v(
|
| 114 |
prompt=prompt,
|
| 115 |
+
negative_prompt=neg_prompt,
|
| 116 |
height=height,
|
| 117 |
width=width,
|
| 118 |
num_frames=num_frames,
|
| 119 |
+
num_inference_steps=50,
|
| 120 |
+
guidance_scale=4.0,
|
|
|
|
| 121 |
generator=generator
|
| 122 |
)[0]
|
| 123 |
else:
|
| 124 |
+
pil_image = Image.fromarray(image)
|
| 125 |
output = pipe.generate_i2v(
|
| 126 |
+
image=pil_image,
|
| 127 |
prompt=prompt,
|
| 128 |
+
negative_prompt=neg_prompt,
|
| 129 |
+
resolution=f"{height}x{width}",
|
| 130 |
num_frames=num_frames,
|
| 131 |
+
num_inference_steps=50,
|
| 132 |
+
guidance_scale=4.0,
|
| 133 |
+
generator=generator,
|
| 134 |
+
use_kv_cache=True,
|
| 135 |
+
offload_kv_cache=False
|
| 136 |
)[0]
|
| 137 |
|
|
|
|
|
|
|
|
|
|
| 138 |
if use_refine:
|
|
|
|
| 139 |
pipe.dit.enable_loras(['refinement_lora'])
|
| 140 |
pipe.dit.enable_bsa()
|
| 141 |
stage1_video_pil = [(frame*255).astype(np.uint8) for frame in output]
|
| 142 |
+
stage1_video_pil = [Image.fromarray(f) for f in stage1_video_pil]
|
| 143 |
+
|
| 144 |
output = pipe.generate_refine(
|
|
|
|
|
|
|
| 145 |
stage1_video=stage1_video_pil,
|
| 146 |
+
prompt=prompt,
|
| 147 |
+
num_cond_frames=1,
|
| 148 |
num_inference_steps=50,
|
| 149 |
generator=generator
|
| 150 |
)[0]
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
output_tensor = torch.from_numpy(np.array(output))
|
| 153 |
+
output_tensor = (output_tensor*255).clamp(0,255).to(torch.uint8)
|
| 154 |
+
|
| 155 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as f:
|
| 156 |
+
write_video(f.name, output_tensor, fps=15, video_codec="libx264", options={"crf": "18"})
|
| 157 |
return f.name
|
| 158 |
|
| 159 |
# ============================================================
|
| 160 |
+
# 5️⃣ Gradio interface
|
| 161 |
# ============================================================
|
| 162 |
+
with gr.Blocks() as demo:
|
| 163 |
+
gr.Markdown("# 🎬 Optimized LongCat-Video Demo (FA3 removed)")
|
| 164 |
+
with gr.Tab("Text-to-Video"):
|
| 165 |
+
prompt_t2v = gr.Textbox(label="Prompt", lines=3)
|
| 166 |
+
neg_prompt_t2v = gr.Textbox(label="Negative Prompt", lines=2, value="ugly, blurry, low quality")
|
| 167 |
+
height_t2v = gr.Slider(256,1024,value=480,step=64,label="Height")
|
| 168 |
+
width_t2v = gr.Slider(256,1024,value=832,step=64,label="Width")
|
| 169 |
+
frames_t2v = gr.Slider(8,180,value=48,step=1,label="Frames")
|
| 170 |
+
seed_t2v = gr.Number(value=42,label="Seed",precision=0)
|
| 171 |
+
refine_t2v = gr.Checkbox(label="Use Refine",value=True)
|
| 172 |
+
out_t2v = gr.Video(label="Generated Video")
|
| 173 |
+
btn_t2v = gr.Button("Generate")
|
| 174 |
+
btn_t2v.click(
|
| 175 |
+
generate_video,
|
| 176 |
+
inputs=["t2v", prompt_t2v, neg_prompt_t2v, None, height_t2v, width_t2v, frames_t2v, seed_t2v, refine_t2v],
|
| 177 |
+
outputs=out_t2v
|
| 178 |
+
)
|
| 179 |
+
with gr.Tab("Image-to-Video"):
|
| 180 |
+
image_i2v = gr.Image(type="numpy")
|
| 181 |
+
prompt_i2v = gr.Textbox(label="Prompt", lines=3)
|
| 182 |
+
neg_prompt_i2v = gr.Textbox(label="Negative Prompt", lines=2, value="ugly, blurry, low quality")
|
| 183 |
+
frames_i2v = gr.Slider(8,180,value=48,step=1,label="Frames")
|
| 184 |
+
seed_i2v = gr.Number(value=42,label="Seed",precision=0)
|
| 185 |
+
refine_i2v = gr.Checkbox(label="Use Refine",value=True)
|
| 186 |
+
out_i2v = gr.Video(label="Generated Video")
|
| 187 |
+
btn_i2v = gr.Button("Generate")
|
| 188 |
+
btn_i2v.click(
|
| 189 |
+
generate_video,
|
| 190 |
+
inputs=["i2v", prompt_i2v, neg_prompt_i2v, image_i2v, 480, 832, frames_i2v, seed_i2v, refine_i2v],
|
| 191 |
+
outputs=out_i2v
|
| 192 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
|
|
|
| 194 |
if __name__=="__main__":
|
| 195 |
demo.launch()
|