Spaces:
Running
on
Zero
Running
on
Zero
Create app_exp.py
Browse files- app_exp.py +268 -0
app_exp.py
ADDED
|
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
import sys
|
| 5 |
+
import subprocess
|
| 6 |
+
import tempfile
|
| 7 |
+
import numpy as np
|
| 8 |
+
import spaces
|
| 9 |
+
import importlib
|
| 10 |
+
import site
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from huggingface_hub import snapshot_download, hf_hub_download
|
| 13 |
+
|
| 14 |
+
# ============================================================
|
| 15 |
+
# 1️⃣ FlashAttention 3 Setup (Auto-install from HF repo)
|
| 16 |
+
# ============================================================
|
| 17 |
+
try:
|
| 18 |
+
print("Attempting to download and install FlashAttention 3 wheel...")
|
| 19 |
+
fa3_wheel = hf_hub_download(
|
| 20 |
+
repo_id="rahul7star/flash-attn-3",
|
| 21 |
+
repo_type="model",
|
| 22 |
+
filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
|
| 23 |
+
)
|
| 24 |
+
subprocess.run(["pip", "install", fa3_wheel], check=True)
|
| 25 |
+
site.addsitedir(site.getsitepackages()[0])
|
| 26 |
+
importlib.invalidate_caches()
|
| 27 |
+
print("✅ FlashAttention 3 installed successfully.")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"⚠️ FlashAttention install failed: {e}")
|
| 30 |
+
print("Proceeding without FA3 acceleration...")
|
| 31 |
+
|
| 32 |
+
# ============================================================
|
| 33 |
+
# 2️⃣ Define model and repo paths
|
| 34 |
+
# ============================================================
|
| 35 |
+
REPO_PATH = "LongCat-Video"
|
| 36 |
+
CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video")
|
| 37 |
+
|
| 38 |
+
# ============================================================
|
| 39 |
+
# 3️⃣ Clone the model repo if needed
|
| 40 |
+
# ============================================================
|
| 41 |
+
if not os.path.exists(REPO_PATH):
|
| 42 |
+
print(f"Cloning LongCat-Video repository to '{REPO_PATH}'...")
|
| 43 |
+
subprocess.run(
|
| 44 |
+
["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH],
|
| 45 |
+
check=True
|
| 46 |
+
)
|
| 47 |
+
print("✅ Repository cloned successfully.")
|
| 48 |
+
|
| 49 |
+
# Make repo importable
|
| 50 |
+
sys.path.insert(0, os.path.abspath(REPO_PATH))
|
| 51 |
+
|
| 52 |
+
# ============================================================
|
| 53 |
+
# 4️⃣ Import model modules after repo setup
|
| 54 |
+
# ============================================================
|
| 55 |
+
from longcat_video.pipeline_longcat_video import LongCatVideoPipeline
|
| 56 |
+
from longcat_video.modules.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 57 |
+
from longcat_video.modules.autoencoder_kl_wan import AutoencoderKLWan
|
| 58 |
+
from longcat_video.modules.longcat_video_dit import LongCatVideoTransformer3DModel
|
| 59 |
+
from longcat_video.context_parallel import context_parallel_util
|
| 60 |
+
from transformers import AutoTokenizer, UMT5EncoderModel
|
| 61 |
+
from diffusers.utils import export_to_video
|
| 62 |
+
|
| 63 |
+
# ============================================================
|
| 64 |
+
# 5️⃣ Download weights (snapshot)
|
| 65 |
+
# ============================================================
|
| 66 |
+
if not os.path.exists(CHECKPOINT_DIR):
|
| 67 |
+
print(f"Downloading model weights to '{CHECKPOINT_DIR}'...")
|
| 68 |
+
snapshot_download(
|
| 69 |
+
repo_id="meituan-longcat/LongCat-Video",
|
| 70 |
+
local_dir=CHECKPOINT_DIR,
|
| 71 |
+
local_dir_use_symlinks=False,
|
| 72 |
+
ignore_patterns=["*.md", "*.gitattributes", "assets/*"]
|
| 73 |
+
)
|
| 74 |
+
print("✅ Model weights ready.")
|
| 75 |
+
|
| 76 |
+
# ============================================================
|
| 77 |
+
# 6️⃣ Initialize model pipeline
|
| 78 |
+
# ============================================================
|
| 79 |
+
pipe = None
|
| 80 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 81 |
+
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
| 82 |
+
|
| 83 |
+
print("--- Initializing Models (once at startup) ---")
|
| 84 |
+
try:
|
| 85 |
+
cp_split_hw = context_parallel_util.get_optimal_split(1)
|
| 86 |
+
|
| 87 |
+
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_DIR, subfolder="tokenizer", torch_dtype=torch_dtype)
|
| 88 |
+
text_encoder = UMT5EncoderModel.from_pretrained(CHECKPOINT_DIR, subfolder="text_encoder", torch_dtype=torch_dtype)
|
| 89 |
+
vae = AutoencoderKLWan.from_pretrained(CHECKPOINT_DIR, subfolder="vae", torch_dtype=torch_dtype)
|
| 90 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(CHECKPOINT_DIR, subfolder="scheduler", torch_dtype=torch_dtype)
|
| 91 |
+
|
| 92 |
+
# ✅ Enable FA3 acceleration
|
| 93 |
+
dit = LongCatVideoTransformer3DModel.from_pretrained(
|
| 94 |
+
CHECKPOINT_DIR,
|
| 95 |
+
enable_flashattn3=True,
|
| 96 |
+
enable_flashattn2=False,
|
| 97 |
+
enable_xformers=True,
|
| 98 |
+
subfolder="dit",
|
| 99 |
+
cp_split_hw=cp_split_hw,
|
| 100 |
+
torch_dtype=torch_dtype,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
pipe = LongCatVideoPipeline(
|
| 104 |
+
tokenizer=tokenizer,
|
| 105 |
+
text_encoder=text_encoder,
|
| 106 |
+
vae=vae,
|
| 107 |
+
scheduler=scheduler,
|
| 108 |
+
dit=dit,
|
| 109 |
+
).to(device)
|
| 110 |
+
|
| 111 |
+
# Load LoRAs
|
| 112 |
+
lora_dir = os.path.join(CHECKPOINT_DIR, "lora")
|
| 113 |
+
pipe.dit.load_lora(os.path.join(lora_dir, "cfg_step_lora.safetensors"), "cfg_step_lora")
|
| 114 |
+
pipe.dit.load_lora(os.path.join(lora_dir, "refinement_lora.safetensors"), "refinement_lora")
|
| 115 |
+
|
| 116 |
+
print("✅ Models loaded successfully.")
|
| 117 |
+
except Exception as e:
|
| 118 |
+
print(f"❌ FATAL: Model initialization failed.\n{e}")
|
| 119 |
+
pipe = None
|
| 120 |
+
|
| 121 |
+
# ============================================================
|
| 122 |
+
# 7️⃣ GPU cleanup utility
|
| 123 |
+
# ============================================================
|
| 124 |
+
def torch_gc():
|
| 125 |
+
if torch.cuda.is_available():
|
| 126 |
+
torch.cuda.empty_cache()
|
| 127 |
+
torch.cuda.ipc_collect()
|
| 128 |
+
|
| 129 |
+
# ============================================================
|
| 130 |
+
# 8️⃣ Dynamic GPU duration logic
|
| 131 |
+
# ============================================================
|
| 132 |
+
def compute_duration(mode, prompt, neg_prompt, image, height, width, resolution, seed, use_distill, use_refine, progress):
|
| 133 |
+
"""
|
| 134 |
+
Adaptive GPU time allocation based on resolution & refinement usage.
|
| 135 |
+
"""
|
| 136 |
+
base = 120 # baseline (seconds)
|
| 137 |
+
if resolution == "720p": base += 60
|
| 138 |
+
if use_refine: base += 60
|
| 139 |
+
if use_distill: base -= 30
|
| 140 |
+
return min(base, 240) # cap at 4 min
|
| 141 |
+
|
| 142 |
+
# ============================================================
|
| 143 |
+
# 9️⃣ Generation function
|
| 144 |
+
# ============================================================
|
| 145 |
+
@spaces.GPU(duration=compute_duration)
|
| 146 |
+
def generate_video(
|
| 147 |
+
mode,
|
| 148 |
+
prompt,
|
| 149 |
+
neg_prompt,
|
| 150 |
+
image,
|
| 151 |
+
height, width, resolution,
|
| 152 |
+
seed,
|
| 153 |
+
use_distill,
|
| 154 |
+
use_refine,
|
| 155 |
+
progress=gr.Progress(track_tqdm=True)
|
| 156 |
+
):
|
| 157 |
+
if pipe is None:
|
| 158 |
+
raise gr.Error("⚠️ Models failed to load. Restart the app.")
|
| 159 |
+
|
| 160 |
+
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 161 |
+
num_frames = 48 # shorter for faster test runs
|
| 162 |
+
|
| 163 |
+
is_distill = use_distill or use_refine
|
| 164 |
+
pipe.dit.enable_loras(["cfg_step_lora"] if is_distill else [])
|
| 165 |
+
|
| 166 |
+
num_inference_steps = 12 if is_distill else 24
|
| 167 |
+
guidance_scale = 2.0 if is_distill else 4.0
|
| 168 |
+
|
| 169 |
+
# --- Stage 1 ---
|
| 170 |
+
progress(0.2, desc="Stage 1: Generating Base Video...")
|
| 171 |
+
if mode == "t2v":
|
| 172 |
+
output = pipe.generate_t2v(
|
| 173 |
+
prompt=prompt,
|
| 174 |
+
negative_prompt=neg_prompt,
|
| 175 |
+
height=height,
|
| 176 |
+
width=width,
|
| 177 |
+
num_frames=num_frames,
|
| 178 |
+
num_inference_steps=num_inference_steps,
|
| 179 |
+
use_distill=is_distill,
|
| 180 |
+
guidance_scale=guidance_scale,
|
| 181 |
+
generator=generator,
|
| 182 |
+
)[0]
|
| 183 |
+
else:
|
| 184 |
+
pil_img = Image.fromarray(image)
|
| 185 |
+
output = pipe.generate_i2v(
|
| 186 |
+
image=pil_img,
|
| 187 |
+
prompt=prompt,
|
| 188 |
+
negative_prompt=neg_prompt,
|
| 189 |
+
resolution=resolution,
|
| 190 |
+
num_frames=num_frames,
|
| 191 |
+
num_inference_steps=num_inference_steps,
|
| 192 |
+
use_distill=is_distill,
|
| 193 |
+
guidance_scale=guidance_scale,
|
| 194 |
+
generator=generator,
|
| 195 |
+
)[0]
|
| 196 |
+
|
| 197 |
+
pipe.dit.disable_all_loras()
|
| 198 |
+
torch_gc()
|
| 199 |
+
|
| 200 |
+
# --- Stage 2 ---
|
| 201 |
+
if use_refine:
|
| 202 |
+
progress(0.6, desc="Stage 2: Refining Video...")
|
| 203 |
+
pipe.dit.enable_loras(["refinement_lora"])
|
| 204 |
+
refined = pipe.generate_refine(
|
| 205 |
+
image=Image.fromarray(image) if mode == "i2v" else None,
|
| 206 |
+
prompt=prompt,
|
| 207 |
+
stage1_video=[Image.fromarray((f * 255).astype(np.uint8)) for f in output],
|
| 208 |
+
num_cond_frames=1 if mode == "i2v" else 0,
|
| 209 |
+
num_inference_steps=20,
|
| 210 |
+
generator=generator,
|
| 211 |
+
)[0]
|
| 212 |
+
output = refined
|
| 213 |
+
pipe.dit.disable_all_loras()
|
| 214 |
+
torch_gc()
|
| 215 |
+
|
| 216 |
+
# --- Export ---
|
| 217 |
+
progress(1.0, desc="Exporting video...")
|
| 218 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_vid:
|
| 219 |
+
export_to_video(output, tmp_vid.name, fps=24)
|
| 220 |
+
return tmp_vid.name
|
| 221 |
+
|
| 222 |
+
# ============================================================
|
| 223 |
+
# 🔟 Gradio UI
|
| 224 |
+
# ============================================================
|
| 225 |
+
css = ".fillable{max-width:960px!important}"
|
| 226 |
+
with gr.Blocks(css=css) as demo:
|
| 227 |
+
gr.Markdown("# 🎬 LongCat-Video + FA3 Accelerated 🚀")
|
| 228 |
+
gr.Markdown("13.6B parameter dense video model — with FlashAttention 3 for speed ⚡")
|
| 229 |
+
|
| 230 |
+
with gr.Tabs():
|
| 231 |
+
# Text-to-Video
|
| 232 |
+
with gr.TabItem("Text-to-Video"):
|
| 233 |
+
prompt_t2v = gr.Textbox(label="Prompt", lines=3, placeholder="A cinematic shot of a corgi running on the beach.")
|
| 234 |
+
neg_t2v = gr.Textbox(label="Negative Prompt", value="ugly, blurry, static")
|
| 235 |
+
h_t2v = gr.Slider(256, 1024, 480, step=64, label="Height")
|
| 236 |
+
w_t2v = gr.Slider(256, 1024, 832, step=64, label="Width")
|
| 237 |
+
seed_t2v = gr.Number(value=42, label="Seed")
|
| 238 |
+
distill_t2v = gr.Checkbox(label="Distill Mode", value=True)
|
| 239 |
+
refine_t2v = gr.Checkbox(label="Refine Mode", value=False)
|
| 240 |
+
btn_t2v = gr.Button("Generate Video", variant="primary")
|
| 241 |
+
out_t2v = gr.Video(label="Output Video")
|
| 242 |
+
|
| 243 |
+
btn_t2v.click(
|
| 244 |
+
generate_video,
|
| 245 |
+
inputs=["t2v", prompt_t2v, neg_t2v, gr.State(None), h_t2v, w_t2v, gr.State("480p"), seed_t2v, distill_t2v, refine_t2v],
|
| 246 |
+
outputs=out_t2v,
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
# Image-to-Video
|
| 250 |
+
with gr.TabItem("Image-to-Video"):
|
| 251 |
+
img_i2v = gr.Image(type="numpy", label="Input Image")
|
| 252 |
+
prompt_i2v = gr.Textbox(label="Prompt", placeholder="The cat in the image blinks.")
|
| 253 |
+
neg_i2v = gr.Textbox(label="Negative Prompt", value="ugly, blurry")
|
| 254 |
+
resolution_i2v = gr.Dropdown(["480p", "720p"], value="480p", label="Resolution")
|
| 255 |
+
seed_i2v = gr.Number(value=42, label="Seed")
|
| 256 |
+
distill_i2v = gr.Checkbox(label="Distill Mode", value=True)
|
| 257 |
+
refine_i2v = gr.Checkbox(label="Refine Mode", value=False)
|
| 258 |
+
btn_i2v = gr.Button("Generate Video", variant="primary")
|
| 259 |
+
out_i2v = gr.Video(label="Output Video")
|
| 260 |
+
|
| 261 |
+
btn_i2v.click(
|
| 262 |
+
generate_video,
|
| 263 |
+
inputs=["i2v", prompt_i2v, neg_i2v, img_i2v, gr.State(None), gr.State(None), resolution_i2v, seed_i2v, distill_i2v, refine_i2v],
|
| 264 |
+
outputs=out_i2v,
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
if __name__ == "__main__":
|
| 268 |
+
demo.launch()
|