Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from sentence_transformers import SentenceTransformer, util
|
| 3 |
-
from transformers import
|
| 4 |
import torch
|
| 5 |
import os
|
| 6 |
import pickle
|
|
@@ -10,38 +10,27 @@ import re
|
|
| 10 |
TEXT_FILE = "icerik.txt"
|
| 11 |
EMBEDDING_CACHE_FILE = "embeddings.pkl"
|
| 12 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
#
|
|
|
|
|
|
|
|
|
|
| 17 |
PHONE_MAIN = '+90 531 294 22 34'
|
| 18 |
PHONE_LANDLINE_EXT = '0232 464 41 00 (Dahili 165)'
|
| 19 |
WHATSAPP_LINK = 'http://wa.me/905312942234'
|
| 20 |
APPOINTMENT_LINK = 'https://calendar.app.google/JT9A1oGHVGopNZ9y8'
|
| 21 |
MAP_LINK = 'https://maps.app.goo.gl/PLsBy9afjiRB9WDb6'
|
| 22 |
-
EMAIL_ADDRESS = '[email protected]'
|
| 23 |
|
| 24 |
|
| 25 |
# --- 2. MODELLERİN YÜKLENMESİ ve VERİ YÜKLEME ---
|
| 26 |
print("Modeller yükleniyor...")
|
|
|
|
| 27 |
embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
generator_tokenizer = AutoTokenizer.from_pretrained(GENERATOR_MODEL_NAME)
|
| 32 |
-
generator_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 33 |
-
GENERATOR_MODEL_NAME,
|
| 34 |
-
device_map="auto" # CPU'ya yüklenmesini sağlar
|
| 35 |
-
)
|
| 36 |
-
generator_pipeline = pipeline(
|
| 37 |
-
"text2text-generation",
|
| 38 |
-
model=generator_model,
|
| 39 |
-
tokenizer=generator_tokenizer
|
| 40 |
-
)
|
| 41 |
-
print("PyTorch Generative AI modeli yüklendi.")
|
| 42 |
-
except Exception as e:
|
| 43 |
-
print(f"Generative AI YÜKLEME HATASI: {e}")
|
| 44 |
-
generator_pipeline = None
|
| 45 |
|
| 46 |
|
| 47 |
def load_documents():
|
|
@@ -66,9 +55,8 @@ def load_documents():
|
|
| 66 |
|
| 67 |
docs, embeddings = load_documents()
|
| 68 |
|
| 69 |
-
# --- 3. POST-PROCESSİNG
|
| 70 |
def post_process_context(context: str) -> str:
|
| 71 |
-
"""Metin temizliği yapar ve düzenli bir görünüm için HTML'e dönüştürür."""
|
| 72 |
paragraphs = context.split('\n\n')
|
| 73 |
cleaned_paragraphs = []
|
| 74 |
for p in paragraphs:
|
|
@@ -79,15 +67,15 @@ def post_process_context(context: str) -> str:
|
|
| 79 |
return "<br> • " + "<br> • ".join(cleaned_paragraphs)
|
| 80 |
|
| 81 |
|
| 82 |
-
# --- 4. ANA MANTIK (
|
| 83 |
|
| 84 |
def answer_question(question: str):
|
| 85 |
|
| 86 |
-
if
|
| 87 |
-
return "<div style='font-family: Arial; color: #8b0000;'><h3>Sistem Hatası:</h3><p>Lokal bilgi kaynakları veya Yapay Zeka motoru yüklenemedi
|
| 88 |
|
| 89 |
|
| 90 |
-
# 1. Retrieval (Çekme)
|
| 91 |
question_embedding = embedding_model.encode(question, convert_to_tensor=True)
|
| 92 |
scores = util.pytorch_cos_sim(question_embedding, embeddings)[0]
|
| 93 |
top_k = min(3, len(docs))
|
|
@@ -95,7 +83,7 @@ def answer_question(question: str):
|
|
| 95 |
|
| 96 |
selected_context = []
|
| 97 |
for score, idx in zip(top_results.values, top_results.indices):
|
| 98 |
-
if score.item() >=
|
| 99 |
selected_context.append(docs[idx.item()])
|
| 100 |
|
| 101 |
if not selected_context:
|
|
@@ -111,25 +99,23 @@ def answer_question(question: str):
|
|
| 111 |
|
| 112 |
full_context = "\n\n".join(selected_context)
|
| 113 |
|
| 114 |
-
# 2.
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
Soru: {question}
|
| 119 |
|
| 120 |
-
|
|
|
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
synthesized_answer = generated_output[0]['generated_text'].strip()
|
| 133 |
|
| 134 |
# 3. Final Sunum
|
| 135 |
processed_context_html = post_process_context(full_context)
|
|
@@ -139,19 +125,19 @@ def answer_question(question: str):
|
|
| 139 |
<h3 style="color: #003366;">🧾 Sorunuz</h3>
|
| 140 |
<p><strong>{question}</strong></p>
|
| 141 |
|
| 142 |
-
<h3 style="color: #003366;">✅
|
| 143 |
<p style="background-color: #eef7ff; border-left: 5px solid #005580; padding: 15px; border-radius: 5px; font-weight: bold;">
|
| 144 |
-
{
|
| 145 |
</p>
|
| 146 |
|
| 147 |
-
<h3 style="color: #003366; margin-top: 20px;">📚
|
| 148 |
<p style="font-size: 14px; color: #333; padding: 0 15px 0 15px;">
|
| 149 |
{processed_context_html}
|
| 150 |
</p>
|
| 151 |
|
| 152 |
<h3 style="color: #8b0000; margin-top: 25px;">📢 Kişisel Değerlendirme ve Görüşme</h3>
|
| 153 |
<p style="font-size: 16px;">
|
| 154 |
-
|
| 155 |
<br><br>
|
| 156 |
<a href='{WHATSAPP_LINK}' style='color: #003366; font-weight: bold; text-decoration: underline;'>📞 WhatsApp Üzerinden Hızlı İletişim</a>
|
| 157 |
<br>
|
|
@@ -162,7 +148,7 @@ def answer_question(question: str):
|
|
| 162 |
return answer_html
|
| 163 |
|
| 164 |
# --- 5. GRADIO ARAYÜZÜ ---
|
| 165 |
-
#
|
| 166 |
header_info = """
|
| 167 |
<div style="font-family: Arial; padding: 15px; background: linear-gradient(to right, #003366, #005580); color: white; border-radius: 10px;">
|
| 168 |
<h2 style="color: white;">Şahin Hukuk | Akıllı Asistan</h2>
|
|
@@ -181,7 +167,6 @@ header_info = """
|
|
| 181 |
MAP_LINK=MAP_LINK
|
| 182 |
)
|
| 183 |
|
| 184 |
-
|
| 185 |
interface = gr.Interface(
|
| 186 |
fn=answer_question,
|
| 187 |
inputs=gr.Textbox(label="Sorunuzu buraya yazın", lines=2, placeholder="Örn: Kira tespit davası nedir?"),
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from sentence_transformers import SentenceTransformer, util
|
| 3 |
+
from transformers import pipeline # T5 yerine standart pipeline kullanacağız
|
| 4 |
import torch
|
| 5 |
import os
|
| 6 |
import pickle
|
|
|
|
| 10 |
TEXT_FILE = "icerik.txt"
|
| 11 |
EMBEDDING_CACHE_FILE = "embeddings.pkl"
|
| 12 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
| 13 |
+
# YENİ MODEL: Türkçe için eğitilmiş, "saçmalamayan" Extractive QA modeli
|
| 14 |
+
QA_MODEL_NAME = "savasy/bert-base-turkish-squad"
|
| 15 |
|
| 16 |
+
RETRIEVAL_THRESHOLD = 0.55 # Paragraf bulma benzerlik skoru
|
| 17 |
+
QA_THRESHOLD = 0.40 # Cevap çıkarma güven skoru
|
| 18 |
+
|
| 19 |
+
# İLETİŞİM BİLGİLERİ (Arayüze Entegre Edilecek)
|
| 20 |
PHONE_MAIN = '+90 531 294 22 34'
|
| 21 |
PHONE_LANDLINE_EXT = '0232 464 41 00 (Dahili 165)'
|
| 22 |
WHATSAPP_LINK = 'http://wa.me/905312942234'
|
| 23 |
APPOINTMENT_LINK = 'https://calendar.app.google/JT9A1oGHVGopNZ9y8'
|
| 24 |
MAP_LINK = 'https://maps.app.goo.gl/PLsBy9afjiRB9WDb6'
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
# --- 2. MODELLERİN YÜKLENMESİ ve VERİ YÜKLEME ---
|
| 28 |
print("Modeller yükleniyor...")
|
| 29 |
+
# 1. Paragraf Bulucu (Retrieval)
|
| 30 |
embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
| 31 |
+
# 2. Cevap Çıkarıcı (Extraction)
|
| 32 |
+
qa_pipeline = pipeline("question-answering", model=QA_MODEL_NAME, tokenizer=QA_MODEL_NAME)
|
| 33 |
+
print("Tüm modeller yüklendi.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
def load_documents():
|
|
|
|
| 55 |
|
| 56 |
docs, embeddings = load_documents()
|
| 57 |
|
| 58 |
+
# --- 3. POST-PROCESSİNG (Sadece Kaynak Gösterimi İçin) ---
|
| 59 |
def post_process_context(context: str) -> str:
|
|
|
|
| 60 |
paragraphs = context.split('\n\n')
|
| 61 |
cleaned_paragraphs = []
|
| 62 |
for p in paragraphs:
|
|
|
|
| 67 |
return "<br> • " + "<br> • ".join(cleaned_paragraphs)
|
| 68 |
|
| 69 |
|
| 70 |
+
# --- 4. ANA MANTIK (Extractive RAG) ---
|
| 71 |
|
| 72 |
def answer_question(question: str):
|
| 73 |
|
| 74 |
+
if qa_pipeline is None or not docs or embeddings is None:
|
| 75 |
+
return "<div style='font-family: Arial; color: #8b0000;'><h3>Sistem Hatası:</h3><p>Lokal bilgi kaynakları veya Yapay Zeka motoru yüklenemedi.</p></div>"
|
| 76 |
|
| 77 |
|
| 78 |
+
# 1. Retrieval (Çekme): En alakalı paragrafları bul
|
| 79 |
question_embedding = embedding_model.encode(question, convert_to_tensor=True)
|
| 80 |
scores = util.pytorch_cos_sim(question_embedding, embeddings)[0]
|
| 81 |
top_k = min(3, len(docs))
|
|
|
|
| 83 |
|
| 84 |
selected_context = []
|
| 85 |
for score, idx in zip(top_results.values, top_results.indices):
|
| 86 |
+
if score.item() >= RETRIEVAL_THRESHOLD:
|
| 87 |
selected_context.append(docs[idx.item()])
|
| 88 |
|
| 89 |
if not selected_context:
|
|
|
|
| 99 |
|
| 100 |
full_context = "\n\n".join(selected_context)
|
| 101 |
|
| 102 |
+
# 2. Extraction (Cevabı Çıkarma) - YENİ KISIM
|
| 103 |
+
# Model, bu metin içinden sorunun cevabını bulur
|
| 104 |
+
qa_result = qa_pipeline(question=question, context=full_context)
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
answer = qa_result['answer']
|
| 107 |
+
score = qa_result['score']
|
| 108 |
|
| 109 |
+
# Güven skoru düşükse (cevap alakasızsa) veya cevap çok kısaysa
|
| 110 |
+
if score < QA_THRESHOLD or len(answer) < 10:
|
| 111 |
+
return f"""
|
| 112 |
+
<div style="font-family: Arial; color: #8b0000;">
|
| 113 |
+
<h3>Bilgi bankamızda bu soruya yönelik net bir cevap bulunamadı.</h3>
|
| 114 |
+
<p>Lütfen ofisimizle iletişime geçin.
|
| 115 |
+
<a href='{WHATSAPP_LINK}' style='color: #8b0000; text-decoration: underline;'>WhatsApp üzerinden bize ulaşabilirsiniz</a>.
|
| 116 |
+
</p>
|
| 117 |
+
</div>
|
| 118 |
+
"""
|
|
|
|
| 119 |
|
| 120 |
# 3. Final Sunum
|
| 121 |
processed_context_html = post_process_context(full_context)
|
|
|
|
| 125 |
<h3 style="color: #003366;">🧾 Sorunuz</h3>
|
| 126 |
<p><strong>{question}</strong></p>
|
| 127 |
|
| 128 |
+
<h3 style="color: #003366;">✅ Yapay Zeka Yanıtı (Çıkarım)</h3>
|
| 129 |
<p style="background-color: #eef7ff; border-left: 5px solid #005580; padding: 15px; border-radius: 5px; font-weight: bold;">
|
| 130 |
+
{answer}
|
| 131 |
</p>
|
| 132 |
|
| 133 |
+
<h3 style="color: #003366; margin-top: 20px;">📚 Cevabın Alındığı Kaynak Metinler</h3>
|
| 134 |
<p style="font-size: 14px; color: #333; padding: 0 15px 0 15px;">
|
| 135 |
{processed_context_html}
|
| 136 |
</p>
|
| 137 |
|
| 138 |
<h3 style="color: #8b0000; margin-top: 25px;">📢 Kişisel Değerlendirme ve Görüşme</h3>
|
| 139 |
<p style="font-size: 16px;">
|
| 140 |
+
Detaylı durum tespiti ve kişisel yol haritanız için hemen bizimle iletişime geçin:
|
| 141 |
<br><br>
|
| 142 |
<a href='{WHATSAPP_LINK}' style='color: #003366; font-weight: bold; text-decoration: underline;'>📞 WhatsApp Üzerinden Hızlı İletişim</a>
|
| 143 |
<br>
|
|
|
|
| 148 |
return answer_html
|
| 149 |
|
| 150 |
# --- 5. GRADIO ARAYÜZÜ ---
|
| 151 |
+
# (Arayüz kodunda değişiklik yok, tüm iletişim bilgileri yerinde)
|
| 152 |
header_info = """
|
| 153 |
<div style="font-family: Arial; padding: 15px; background: linear-gradient(to right, #003366, #005580); color: white; border-radius: 10px;">
|
| 154 |
<h2 style="color: white;">Şahin Hukuk | Akıllı Asistan</h2>
|
|
|
|
| 167 |
MAP_LINK=MAP_LINK
|
| 168 |
)
|
| 169 |
|
|
|
|
| 170 |
interface = gr.Interface(
|
| 171 |
fn=answer_question,
|
| 172 |
inputs=gr.Textbox(label="Sorunuzu buraya yazın", lines=2, placeholder="Örn: Kira tespit davası nedir?"),
|