Spaces:
Sleeping
Sleeping
typing
Browse files
backend/__pycache__/main.cpython-310.pyc
CHANGED
|
Binary files a/backend/__pycache__/main.cpython-310.pyc and b/backend/__pycache__/main.cpython-310.pyc differ
|
|
|
backend/main.py
CHANGED
|
@@ -1,14 +1,26 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.responses import JSONResponse
|
|
|
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from backend.utils import generate_completions
|
| 5 |
from backend import config
|
| 6 |
from backend.database import get_db_connection
|
| 7 |
import psycopg2
|
| 8 |
from psycopg2.extras import RealDictCursor
|
|
|
|
|
|
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Dependency to get database connection
|
| 13 |
async def get_db():
|
| 14 |
conn = await get_db_connection()
|
|
@@ -17,9 +29,17 @@ async def get_db():
|
|
| 17 |
finally:
|
| 18 |
conn.close()
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
class GenerationRequest(BaseModel):
|
| 21 |
user_id: int
|
| 22 |
-
query: str
|
| 23 |
|
| 24 |
class MetadataRequest(BaseModel):
|
| 25 |
query: str
|
|
@@ -64,6 +84,24 @@ async def generate_flashcards(data: GenerationRequest):
|
|
| 64 |
except Exception as e:
|
| 65 |
raise HTTPException(status_code=500, detail=str(e))
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
@app.post("/generate/exercises")
|
| 69 |
async def generate_exercises(data: GenerationRequest):
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
from pydantic import BaseModel
|
| 5 |
from backend.utils import generate_completions
|
| 6 |
from backend import config
|
| 7 |
from backend.database import get_db_connection
|
| 8 |
import psycopg2
|
| 9 |
from psycopg2.extras import RealDictCursor
|
| 10 |
+
from typing import Union, List, Literal
|
| 11 |
+
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
+
# Add CORS middleware
|
| 16 |
+
app.add_middleware(
|
| 17 |
+
CORSMiddleware,
|
| 18 |
+
allow_origins=["*"], # Allows all origins
|
| 19 |
+
allow_credentials=True,
|
| 20 |
+
allow_methods=["*"], # Allows all methods
|
| 21 |
+
allow_headers=["*"], # Allows all headers
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
# Dependency to get database connection
|
| 25 |
async def get_db():
|
| 26 |
conn = await get_db_connection()
|
|
|
|
| 29 |
finally:
|
| 30 |
conn.close()
|
| 31 |
|
| 32 |
+
# class GenerationRequest(BaseModel):
|
| 33 |
+
# user_id: int
|
| 34 |
+
# query: str
|
| 35 |
+
|
| 36 |
+
class Message(BaseModel):
|
| 37 |
+
role: Literal["user", "assistant"]
|
| 38 |
+
content: str
|
| 39 |
+
|
| 40 |
class GenerationRequest(BaseModel):
|
| 41 |
user_id: int
|
| 42 |
+
query: Union[str, List[Message]]
|
| 43 |
|
| 44 |
class MetadataRequest(BaseModel):
|
| 45 |
query: str
|
|
|
|
| 84 |
except Exception as e:
|
| 85 |
raise HTTPException(status_code=500, detail=str(e))
|
| 86 |
|
| 87 |
+
# @app.post("/generate/flashcards")
|
| 88 |
+
# async def generate_flashcards(data: GenerationRequest):
|
| 89 |
+
# try:
|
| 90 |
+
# response = await generate_completions.get_completions(
|
| 91 |
+
# data.query,
|
| 92 |
+
# config.flashcard_mode_instructions
|
| 93 |
+
# )
|
| 94 |
+
# return JSONResponse(
|
| 95 |
+
# content={
|
| 96 |
+
# "data": response,
|
| 97 |
+
# "type": "flashcards",
|
| 98 |
+
# "status": "success"
|
| 99 |
+
# },
|
| 100 |
+
# status_code=200
|
| 101 |
+
# )
|
| 102 |
+
# except Exception as e:
|
| 103 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
| 104 |
+
|
| 105 |
|
| 106 |
@app.post("/generate/exercises")
|
| 107 |
async def generate_exercises(data: GenerationRequest):
|
backend/utils/__pycache__/generate_completions.cpython-310.pyc
CHANGED
|
Binary files a/backend/utils/__pycache__/generate_completions.cpython-310.pyc and b/backend/utils/__pycache__/generate_completions.cpython-310.pyc differ
|
|
|
backend/utils/generate_completions.py
CHANGED
|
@@ -2,9 +2,10 @@ from openai import AsyncOpenAI, OpenAI
|
|
| 2 |
import asyncio
|
| 3 |
import json
|
| 4 |
from typing import AsyncIterator
|
| 5 |
-
from typing import Union, List, Dict
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
import os
|
|
|
|
| 8 |
load_dotenv()
|
| 9 |
|
| 10 |
# Initialize the async client
|
|
@@ -13,6 +14,14 @@ client = AsyncOpenAI(
|
|
| 13 |
api_key=os.getenv("API_KEY"),
|
| 14 |
)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def process_input(data: Union[str, List[Dict[str, str]]]) -> Union[str, List[Dict[str, str]]]:
|
| 17 |
"""
|
| 18 |
Processes input to either uppercase a string or modify the 'content' field
|
|
@@ -32,19 +41,59 @@ def process_input(data: Union[str, List[Dict[str, str]]]) -> Union[str, List[Dic
|
|
| 32 |
raise TypeError("Input must be a string or a list of dictionaries with a 'content' field")
|
| 33 |
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
async def get_completions(
|
| 36 |
prompt: Union[str, List[Dict[str, str]]],
|
| 37 |
instructions: str
|
| 38 |
) -> str:
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
if isinstance(processed_prompt, str):
|
| 42 |
-
messages
|
| 43 |
-
|
| 44 |
-
{"role": "user", "content": processed_prompt}
|
| 45 |
-
]
|
| 46 |
elif isinstance(processed_prompt, list):
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
else:
|
| 49 |
raise TypeError("Unexpected processed input type.")
|
| 50 |
|
|
@@ -54,5 +103,4 @@ async def get_completions(
|
|
| 54 |
response_format={"type": "json_object"}
|
| 55 |
)
|
| 56 |
|
| 57 |
-
|
| 58 |
-
return output
|
|
|
|
| 2 |
import asyncio
|
| 3 |
import json
|
| 4 |
from typing import AsyncIterator
|
| 5 |
+
from typing import Union, List, Dict, Literal
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
import os
|
| 8 |
+
from pydantic import BaseModel
|
| 9 |
load_dotenv()
|
| 10 |
|
| 11 |
# Initialize the async client
|
|
|
|
| 14 |
api_key=os.getenv("API_KEY"),
|
| 15 |
)
|
| 16 |
|
| 17 |
+
class Message(BaseModel):
|
| 18 |
+
role: Literal["user", "assistant"]
|
| 19 |
+
content: str
|
| 20 |
+
|
| 21 |
+
# Helper function to flatten chat messages into a single string prompt
|
| 22 |
+
def flatten_messages(messages: List[Message]) -> str:
|
| 23 |
+
return "\n".join([f"{m.role}: {m.content}" for m in messages])
|
| 24 |
+
|
| 25 |
def process_input(data: Union[str, List[Dict[str, str]]]) -> Union[str, List[Dict[str, str]]]:
|
| 26 |
"""
|
| 27 |
Processes input to either uppercase a string or modify the 'content' field
|
|
|
|
| 41 |
raise TypeError("Input must be a string or a list of dictionaries with a 'content' field")
|
| 42 |
|
| 43 |
|
| 44 |
+
# async def get_completions(
|
| 45 |
+
# prompt: Union[str, List[Dict[str, str]]],
|
| 46 |
+
# instructions: str
|
| 47 |
+
# ) -> str:
|
| 48 |
+
# processed_prompt = process_input(prompt) # Ensures the input format is correct
|
| 49 |
+
|
| 50 |
+
# if isinstance(processed_prompt, str):
|
| 51 |
+
# messages = [
|
| 52 |
+
# {"role": "system", "content": instructions},
|
| 53 |
+
# {"role": "user", "content": processed_prompt}
|
| 54 |
+
# ]
|
| 55 |
+
# elif isinstance(processed_prompt, list):
|
| 56 |
+
# messages = [{"role": "system", "content": instructions}] + processed_prompt
|
| 57 |
+
# else:
|
| 58 |
+
# raise TypeError("Unexpected processed input type.")
|
| 59 |
+
|
| 60 |
+
# response = await client.chat.completions.create(
|
| 61 |
+
# model=os.getenv("MODEL"),
|
| 62 |
+
# messages=messages,
|
| 63 |
+
# response_format={"type": "json_object"}
|
| 64 |
+
# )
|
| 65 |
+
|
| 66 |
+
# output: str = response.choices[0].message.content
|
| 67 |
+
# return output
|
| 68 |
+
|
| 69 |
async def get_completions(
|
| 70 |
prompt: Union[str, List[Dict[str, str]]],
|
| 71 |
instructions: str
|
| 72 |
) -> str:
|
| 73 |
+
if isinstance(prompt, list):
|
| 74 |
+
formatted_query = flatten_messages(prompt)
|
| 75 |
+
else:
|
| 76 |
+
formatted_query = prompt
|
| 77 |
+
|
| 78 |
+
processed_prompt = process_input(formatted_query)
|
| 79 |
+
|
| 80 |
+
messages = [{"role": "system", "content": instructions}]
|
| 81 |
|
| 82 |
if isinstance(processed_prompt, str):
|
| 83 |
+
messages.append({"role": "user", "content": processed_prompt})
|
| 84 |
+
|
|
|
|
|
|
|
| 85 |
elif isinstance(processed_prompt, list):
|
| 86 |
+
# Only keep the history for context and append the latest user query at the end
|
| 87 |
+
history = processed_prompt[:-1]
|
| 88 |
+
last_user_msg = processed_prompt[-1]
|
| 89 |
+
|
| 90 |
+
# Optional: Validate that the last message is from the user
|
| 91 |
+
if last_user_msg.get("role") != "user":
|
| 92 |
+
raise ValueError("Last message must be from the user.")
|
| 93 |
+
|
| 94 |
+
messages += history
|
| 95 |
+
messages.append(last_user_msg)
|
| 96 |
+
|
| 97 |
else:
|
| 98 |
raise TypeError("Unexpected processed input type.")
|
| 99 |
|
|
|
|
| 103 |
response_format={"type": "json_object"}
|
| 104 |
)
|
| 105 |
|
| 106 |
+
return response.choices[0].message.content # adjust based on your client
|
|
|