Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import subprocess | |
| import os | |
| import shutil | |
| import tempfile | |
| import spaces | |
| import torch | |
| import sys | |
| import uuid | |
| import re | |
| import numpy as np | |
| import json | |
| import time | |
| import copy | |
| from collections import Counter | |
| # Install flash-attn and set environment variable to skip cuda build | |
| print("Installing flash-attn...") | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True | |
| ) | |
| # Download snapshot from huggingface_hub | |
| from huggingface_hub import snapshot_download | |
| folder_path = './xcodec_mini_infer' | |
| if not os.path.exists(folder_path): | |
| os.mkdir(folder_path) | |
| print(f"Folder created at: {folder_path}") | |
| else: | |
| print(f"Folder already exists at: {folder_path}") | |
| snapshot_download( | |
| repo_id="m-a-p/xcodec_mini_infer", | |
| local_dir=folder_path | |
| ) | |
| # Change working directory to current folder | |
| inference_dir = "." | |
| try: | |
| os.chdir(inference_dir) | |
| print(f"Changed working directory to: {os.getcwd()}") | |
| except FileNotFoundError: | |
| print(f"Directory not found: {inference_dir}") | |
| exit(1) | |
| # Append necessary module paths | |
| base_path = os.path.dirname(os.path.abspath(__file__)) | |
| sys.path.append(os.path.join(base_path, 'xcodec_mini_infer')) | |
| sys.path.append(os.path.join(base_path, 'xcodec_mini_infer', 'descriptaudiocodec')) | |
| # Other imports | |
| from omegaconf import OmegaConf | |
| import torchaudio | |
| from torchaudio.transforms import Resample | |
| import soundfile as sf | |
| from tqdm import tqdm | |
| from einops import rearrange | |
| from codecmanipulator import CodecManipulator | |
| from mmtokenizer import _MMSentencePieceTokenizer | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList | |
| import glob | |
| from models.soundstream_hubert_new import SoundStream | |
| # Device setup | |
| device = "cuda:0" | |
| # Load and (optionally) compile the LM model | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "m-a-p/YuE-s1-7B-anneal-en-cot", | |
| torch_dtype=torch.float16, | |
| attn_implementation="flash_attention_2", | |
| ).to(device) | |
| model.eval() | |
| try: | |
| # torch.compile is available in PyTorch 2.0+ | |
| model = torch.compile(model) | |
| except Exception as e: | |
| print("torch.compile not used for model:", e) | |
| # File paths for codec model checkpoint | |
| basic_model_config = os.path.join(folder_path, 'final_ckpt/config.yaml') | |
| resume_path = os.path.join(folder_path, 'final_ckpt/ckpt_00360000.pth') | |
| # Initialize tokenizer and codec manipulator | |
| mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") | |
| codectool = CodecManipulator("xcodec", 0, 1) | |
| # Load codec model config and initialize codec model | |
| model_config = OmegaConf.load(basic_model_config) | |
| # Dynamically create the model from its name in the config. | |
| codec_class = eval(model_config.generator.name) | |
| codec_model = codec_class(**model_config.generator.config).to(device) | |
| parameter_dict = torch.load(resume_path, map_location='cpu') | |
| codec_model.load_state_dict(parameter_dict['codec_model']) | |
| codec_model.eval() | |
| try: | |
| codec_model = torch.compile(codec_model) | |
| except Exception as e: | |
| print("torch.compile not used for codec_model:", e) | |
| # Pre-compile the regex pattern for splitting lyrics | |
| LYRICS_PATTERN = re.compile(r"\[(\w+)\](.*?)\n(?=\[|\Z)", re.DOTALL) | |
| # ------------------ GPU decorated generation function ------------------ # | |
| def generate_music( | |
| max_new_tokens=5, | |
| run_n_segments=2, | |
| genre_txt=None, | |
| lyrics_txt=None, | |
| use_audio_prompt=False, | |
| audio_prompt_path="", | |
| prompt_start_time=0.0, | |
| prompt_end_time=30.0, | |
| cuda_idx=0, | |
| rescale=False, | |
| ): | |
| if use_audio_prompt and not audio_prompt_path: | |
| raise FileNotFoundError("Please provide an audio prompt filepath when 'use_audio_prompt' is enabled!") | |
| max_new_tokens = max_new_tokens * 100 # scaling factor | |
| with tempfile.TemporaryDirectory() as output_dir: | |
| stage1_output_dir = os.path.join(output_dir, "stage1") | |
| os.makedirs(stage1_output_dir, exist_ok=True) | |
| # -- In-place logits processor that blocks token ranges -- | |
| class BlockTokenRangeProcessor(LogitsProcessor): | |
| def __init__(self, start_id, end_id): | |
| # Pre-create a tensor for indices if possible | |
| self.blocked_token_ids = list(range(start_id, end_id)) | |
| def __call__(self, input_ids, scores): | |
| scores[:, self.blocked_token_ids] = -float("inf") | |
| return scores | |
| # -- Audio processing utility -- | |
| def load_audio_mono(filepath, sampling_rate=16000): | |
| audio, sr = torchaudio.load(filepath) | |
| audio = audio.mean(dim=0, keepdim=True) # convert to mono | |
| if sr != sampling_rate: | |
| resampler = Resample(orig_freq=sr, new_freq=sampling_rate) | |
| audio = resampler(audio) | |
| return audio | |
| # -- Lyrics splitting using precompiled regex -- | |
| def split_lyrics(lyrics: str): | |
| segments = LYRICS_PATTERN.findall(lyrics) | |
| # Return segments with formatting (strip extra whitespace) | |
| return [f"[{tag}]\n{text.strip()}\n\n" for tag, text in segments] | |
| # Prepare prompt texts | |
| genres = genre_txt.strip() if genre_txt else "" | |
| lyrics_segments = split_lyrics(lyrics_txt + "\n") | |
| full_lyrics = "\n".join(lyrics_segments) | |
| # The first prompt is a global instruction; the rest are segments. | |
| prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] | |
| prompt_texts += lyrics_segments | |
| random_id = uuid.uuid4() | |
| raw_output = None | |
| # Decoding config parameters | |
| top_p = 0.93 | |
| temperature = 1.0 | |
| repetition_penalty = 1.2 | |
| # Pre-tokenize static tokens | |
| start_of_segment = mmtokenizer.tokenize('[start_of_segment]') | |
| end_of_segment = mmtokenizer.tokenize('[end_of_segment]') | |
| soa_token = mmtokenizer.soa # start-of-audio token id | |
| eoa_token = mmtokenizer.eoa # end-of-audio token id | |
| # Pre-tokenize the global prompt (first element) | |
| global_prompt_ids = mmtokenizer.tokenize(prompt_texts[0]) | |
| run_n_segments = min(run_n_segments + 1, len(prompt_texts)) | |
| # Loop over segments. (Note: Each segment is processed sequentially.) | |
| for i, p in enumerate(tqdm(prompt_texts[:run_n_segments], desc="Generating segments")): | |
| # Remove any spurious tokens in the text | |
| section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') | |
| guidance_scale = 1.5 if i <= 1 else 1.2 | |
| if i == 0: | |
| # Skip generation on the instruction segment. | |
| continue | |
| # Build prompt IDs differently depending on whether audio prompt is enabled. | |
| if i == 1: | |
| if use_audio_prompt: | |
| audio_prompt = load_audio_mono(audio_prompt_path) | |
| audio_prompt = audio_prompt.unsqueeze(0) | |
| with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): | |
| raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) | |
| # Process raw codes (transpose and convert to numpy) | |
| raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16) | |
| code_ids = codectool.npy2ids(raw_codes[0]) | |
| # Slice using prompt start/end time (assuming 50 tokens per second) | |
| audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] | |
| audio_prompt_codec_ids = [soa_token] + codectool.sep_ids + audio_prompt_codec + [eoa_token] | |
| sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") | |
| head_id = global_prompt_ids + sentence_ids | |
| else: | |
| head_id = global_prompt_ids | |
| prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids | |
| else: | |
| prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids | |
| prompt_ids_tensor = torch.as_tensor(prompt_ids, device=device).unsqueeze(0) | |
| if raw_output is not None: | |
| # Concatenate previous outputs with the new prompt | |
| input_ids = torch.cat([raw_output, prompt_ids_tensor], dim=1) | |
| else: | |
| input_ids = prompt_ids_tensor | |
| # Enforce maximum context window by slicing if needed | |
| max_context = 16384 - max_new_tokens - 1 | |
| if input_ids.shape[-1] > max_context: | |
| input_ids = input_ids[:, -max_context:] | |
| with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): | |
| output_seq = model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=max_new_tokens, | |
| min_new_tokens=100, | |
| do_sample=True, | |
| top_p=top_p, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| eos_token_id=eoa_token, | |
| pad_token_id=eoa_token, | |
| logits_processor=LogitsProcessorList([ | |
| BlockTokenRangeProcessor(0, 32002), | |
| BlockTokenRangeProcessor(32016, 32016) | |
| ]), | |
| guidance_scale=guidance_scale, | |
| use_cache=True | |
| ) | |
| # Ensure the output ends with an end-of-audio token | |
| if output_seq[0, -1].item() != eoa_token: | |
| tensor_eoa = torch.as_tensor([[eoa_token]], device=device) | |
| output_seq = torch.cat((output_seq, tensor_eoa), dim=1) | |
| # For subsequent segments, append only the newly generated tokens. | |
| if raw_output is not None: | |
| new_tokens = output_seq[:, input_ids.shape[-1]:] | |
| raw_output = torch.cat([raw_output, prompt_ids_tensor, new_tokens], dim=1) | |
| else: | |
| raw_output = output_seq | |
| # Save raw output codec tokens to temporary files and check token pairs. | |
| ids = raw_output[0].cpu().numpy() | |
| soa_idx = np.where(ids == soa_token)[0] | |
| eoa_idx = np.where(ids == eoa_token)[0] | |
| if len(soa_idx) != len(eoa_idx): | |
| raise ValueError(f'Invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') | |
| vocals_list = [] | |
| instrumentals_list = [] | |
| # If using an audio prompt, skip the first pair (it may be reference) | |
| start_idx = 1 if use_audio_prompt else 0 | |
| for i in range(start_idx, len(soa_idx)): | |
| codec_ids = ids[soa_idx[i] + 1: eoa_idx[i]] | |
| if codec_ids[0] == 32016: | |
| codec_ids = codec_ids[1:] | |
| # Force even length and reshape into 2 channels. | |
| codec_ids = codec_ids[:2 * (len(codec_ids) // 2)] | |
| codec_ids = np.array(codec_ids) | |
| reshaped = rearrange(codec_ids, "(n b) -> b n", b=2) | |
| vocals_list.append(codectool.ids2npy(reshaped[0])) | |
| instrumentals_list.append(codectool.ids2npy(reshaped[1])) | |
| vocals = np.concatenate(vocals_list, axis=1) | |
| instrumentals = np.concatenate(instrumentals_list, axis=1) | |
| # Save the numpy arrays to temporary files | |
| vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{str(random_id).replace('.', '@')}.npy") | |
| inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{str(random_id).replace('.', '@')}.npy") | |
| np.save(vocal_save_path, vocals) | |
| np.save(inst_save_path, instrumentals) | |
| stage1_output_set = [vocal_save_path, inst_save_path] | |
| print("Converting to Audio...") | |
| # Utility function for saving audio with in-place clipping | |
| def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): | |
| os.makedirs(os.path.dirname(path), exist_ok=True) | |
| limit = 0.99 | |
| max_val = wav.abs().max().item() | |
| if rescale and max_val > 0: | |
| wav = wav * (limit / max_val) | |
| else: | |
| wav = wav.clamp(-limit, limit) | |
| torchaudio.save(path, wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) | |
| # Reconstruct tracks by decoding codec tokens | |
| recons_output_dir = os.path.join(output_dir, "recons") | |
| recons_mix_dir = os.path.join(recons_output_dir, "mix") | |
| os.makedirs(recons_mix_dir, exist_ok=True) | |
| tracks = [] | |
| for npy_path in stage1_output_set: | |
| codec_result = np.load(npy_path) | |
| with torch.inference_mode(): | |
| # Adjust shape: (1, T, C) expected by the decoder | |
| input_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device) | |
| decoded_waveform = codec_model.decode(input_tensor) | |
| decoded_waveform = decoded_waveform.cpu().squeeze(0) | |
| save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy_path))[0] + ".mp3") | |
| tracks.append(save_path) | |
| save_audio(decoded_waveform, save_path, sample_rate=16000) | |
| # Mix vocal and instrumental tracks (using torch to avoid extra I/O if possible) | |
| for inst_path in tracks: | |
| try: | |
| if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) and 'instrumental' in inst_path: | |
| vocal_path = inst_path.replace('instrumental', 'vocal') | |
| if not os.path.exists(vocal_path): | |
| continue | |
| # Read using soundfile | |
| vocal_stem, sr = sf.read(vocal_path) | |
| instrumental_stem, _ = sf.read(inst_path) | |
| mix_stem = (vocal_stem + instrumental_stem) / 1.0 | |
| mix_path = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) | |
| # Write the mix to disk (if needed) or return in memory | |
| # Here we return three tuples: (sr, mix), (sr, vocal), (sr, instrumental) | |
| return (sr, (mix_stem * 32767).astype(np.int16)), (sr, (vocal_stem * 32767).astype(np.int16)), (sr, (instrumental_stem * 32767).astype(np.int16)) | |
| except Exception as e: | |
| print("Mixing error:", e) | |
| return None, None, None | |
| # ------------------ Inference function and Gradio UI ------------------ # | |
| def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15): | |
| try: | |
| mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music( | |
| genre_txt=genre_txt_content, | |
| lyrics_txt=lyrics_txt_content, | |
| run_n_segments=num_segments, | |
| cuda_idx=0, | |
| max_new_tokens=max_new_tokens | |
| ) | |
| return mixed_audio_data, vocal_audio_data, instrumental_audio_data | |
| except Exception as e: | |
| gr.Warning("An Error Occurred: " + str(e)) | |
| return None, None, None | |
| finally: | |
| print("Temporary files deleted.") | |
| # Build Gradio UI | |
| with gr.Blocks() as demo: | |
| with gr.Column(): | |
| gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") | |
| gr.HTML( | |
| """ | |
| <div style="display:flex;column-gap:4px;"> | |
| <a href="https://github.com/multimodal-art-projection/YuE"> | |
| <img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
| </a> | |
| <a href="https://map-yue.github.io"> | |
| <img src='https://img.shields.io/badge/Project-Page-green'> | |
| </a> | |
| <a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
| </a> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| genre_txt = gr.Textbox(label="Genre") | |
| lyrics_txt = gr.Textbox(label="Lyrics") | |
| with gr.Column(): | |
| num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) | |
| max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True) | |
| submit_btn = gr.Button("Submit") | |
| music_out = gr.Audio(label="Mixed Audio Result") | |
| with gr.Accordion(label="Vocal and Instrumental Result", open=False): | |
| vocal_out = gr.Audio(label="Vocal Audio") | |
| instrumental_out = gr.Audio(label="Instrumental Audio") | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar", | |
| """[verse] | |
| Step back cause I'll ignite | |
| Won't quit without a fight | |
| No escape, gear up, it's a fierce fight | |
| Brace up, raise your hands up and light | |
| Fear the might. Step back cause I'll ignite | |
| Won't back down without a fight | |
| It keeps going and going, the heat is on. | |
| [chorus] | |
| Hot flame. Hot flame. | |
| Still here, still holding aim | |
| I don't care if I'm bright or dim: nah. | |
| I've made it clear, I'll make it again | |
| All I want is my crew and my gain. | |
| I'm feeling wild, got a bit of rebel style. | |
| Locked inside my mind, hot flame. | |
| """ | |
| ], | |
| [ | |
| "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", | |
| """[verse] | |
| Woke up in the morning, sun is shining bright | |
| Chasing all my dreams, gotta get my mind right | |
| City lights are fading, but my vision's clear | |
| Got my team beside me, no room for fear | |
| Walking through the streets, beats inside my head | |
| Every step I take, closer to the bread | |
| People passing by, they don't understand | |
| Building up my future with my own two hands | |
| [chorus] | |
| This is my life, and I'mma keep it real | |
| Never gonna quit, no, I'm never gonna stop | |
| Through the highs and lows, I'mma keep it real | |
| Living out my dreams with this mic and a deal | |
| """ | |
| ] | |
| ], | |
| inputs=[genre_txt, lyrics_txt], | |
| outputs=[music_out, vocal_out, instrumental_out], | |
| cache_examples=True, | |
| cache_mode="eager", | |
| fn=infer | |
| ) | |
| submit_btn.click( | |
| fn=infer, | |
| inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], | |
| outputs=[music_out, vocal_out, instrumental_out] | |
| ) | |
| gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.") | |
| demo.queue().launch(show_error=True) | |